Basic 14 Micro-Nano Tribology

 Ultra low friction of Carbon Nitride (CNx) and Low adhesion and friction of rubber -

Prof. N. Umehara Dept. of Mechanical Science and Engineering, Nagoya University

1.Ultra low friction of Carbon Nitride (CNx)Mechanism

Effect of carbon overcoat on friction

2.Low adhesion and friction of rubber

- High dense plasma irradiation to CIIR
- UV ray irradiation to TPE with PFPE

Basic 14 Micro-Nano Tribology - Ultra low friction of Carbon Nitride (CNx) and Low adhesion and friction of rubber -COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

Prof. N. Umehara

1. Ultra low friction of Carbon Nitride(CNx)

A.Y.Liu, M.L.Cohen, Prediction of new low compressibility solids, Science, 245 (1989) 841-842.

Introduction

DLC; A.Erdemir (1991), J.Franks, K.Enke and A.Richardt (1990) H:DLC; A.Erdemir (1999), C.Donnet(1998) a-CNx; N.Umehara, K.Kato(1998)

COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

Pros - Ultra low friction of Carbon Nitride (CNx) and Low adhesion and friction of rubber

Prof. N. Umehara

Hardness: $H_{a-CNx}/H_{a-C}=1.31$ Low friction coefficient(against AI_2O_3/TiC slider)

B.Wei et al. (1998)

Durability: $D_{a-CNx}/D_{a-C}=3\sim4$ (against AI_2O_3/TiC pin) E.C.Cutiongco et al. (1996)

Ion Beam Assisted Deposition

Basic 14 Micro-Nano Tribology

TEM photo of CNx by IBAD and Hardness

- · Hardness 21GPa
- Amorphous structure
 N=C bonds
- 38) Micro-wear Mechnaisms of Thin Hard Coatings Sliding against Diamond Tip of AFM, ASME, Advances in Information Storage Systems, <u>9</u> (1998)289-302.
 K. Kato, H. Koide, and N. Umehara

Effect of ambient gas on friction coefficient

(N. Umehara and K. Kato, 1998)

Running-in is important for ultra low friction of CNx. Something changed during running-in.

Raman spectroscopy after running-in

Large I_D/I_G provides small friction coefficient

Increase in the number or size of small graphitic domain

N. Umehara, M. Tatsuno, K. Kato, Proc. Int. Trib. Conf. Nagasaki(2000)1007.

XPS before and after running-in

(a) a-CNx coating

(b) wear track after 240 cycles in N₂ gas

After running-in in N₂ gas, C=N increases larger than C-N.

Depth profile of N after running-in in various environment

Tokoroyama, Umehara, IIP Session, Annual meeting of JSME, Sept. 11,2007

Basic 14 Micro-Nano Tribology

Prof. N. Umehara

- Ultra low friction of Carbon Nitride (CNx) and Low adhesion and friction of rubber -

COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

Self surface modification in the running-in process

Outline & Summary

- 1.Ultra low friction of Carbon Nitride (CNx)
 - Mechanism Self modification in nm thickness
 - Effect of carbon overcoat on friction
 - Effect of Ultraviolet (UV) ray irradiation on friction
- 2. Low adhesion and friction of rubber
 - High dense plasma irradiation to CIIR
 - UV ray irradiation to TPE with PFPE

Enhancement of running-in of CNx

with nm thickness carbon overcoat

Effect of 3nm thickness carbon overcoat on friction of CNx

3nm C + CNx

Proc. ICMDT Sapporo,2007, Tokoroyama, Wang, Umehara, Fuwa

Basic 14 Micro-Nano Tribology - Ultra low friction of Carbon Nitride (CNx) and Low adhesion and friction of rubber -COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

Outline & Summary

1.Ultra low friction of Carbon Nitride (CNx)

- Mechanism Self modification in nm thickness
- Effect of carbon overcoat on friction not need running-in
- Effect of Ultraviolet (UV) ray irradiation
 on friction
- 2. Low adhesion and friction of rubber
 - High dense plasma irradiation to CIIR
 - $\cdot\,$ UV ray irradiation to TPE with PFPE

The expectation of ultraviolet ray irradiation to CNx

Prof. N. Umehara

Basic 14 Micro-Nano Tribology

Background –Effect of UV irradiation

Energy of photon
$$E = h v = h \frac{c}{\lambda}$$

h: Planck's constant, v: frequency, *c*: light velocity, λ: wavelength

Experimental – Ultraviolet ray irradiation to CNx coating

Did Nitrogen atoms desorb from CNx coating with UV irradiation?				
Table 1 The energy of each wavelength		Table 2 UV irradiation condition		
Wavelength λ , nm	Energy, kJ/mol	Test pieces	Irradiation time	
365	326	•CN ₀	•60 min	
312	382	•CN _{0.09}	•120 min	
254	469	•CN _{0.12}	•180 min	
		•CN _{0.19}	•240 min	
AES analysis out out of the second se				
N/C ratio: I	N/C=x/1	150 250	350 450 $550Kinetic energy, eV$	
Basic 14 Micro-Nan	Tribology	Prof	N IImebara	

- Ultra low friction of Carbon Nitride (CNx) and Low adhesion and friction of rubber -

COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

XPS analysis results

J. M. Ripalda et al. Diam. Relat. Mater. 7(1998) 402-406.

- Ultra low friction of Carbon Nitride (CNx) and Low adhesion and friction of rubber -

COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

Experimental of tribological property under N₂

Vacuum chamber	
Strain gauges	Speed Ball control holder motor Si ₃ N ₄ ball

UV irradiation conditions		
Wavelength λ	Irradiation time	
•365 nm	•60 min	
•312 nm	•120 min	
•254 nm	•180 min	
	•240 min	

|--|

Load	0.1 N
Sliding speed	4.19×10 ⁻² m/s
Rotation speed	200 rpm
Rotation radius	2.0 mm
Ambient	Nitrogen

Friction test results under N₂ environment

COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

The effect of UV irradiation on running-in period

3.4 The effect of UV irradiation on minimum m

As-deposit: $\mu = 0.040 \Rightarrow 312 \text{ nm} - 120 \text{ min}$: $\mu = 0.004$

CN_{0.19}

Outline & Summary

- 1.Ultra low friction of Carbon Nitride (CNx)
 - Mechanism Self modification in nm thickness
 - Effect of carbon overcoat on friction not need running-in
 - Effect of Ultraviolet (UV) ray irradiation on friction More rapid running-in by 1/10, Lower minimum friction by 1/10
- 2. Low adhesion and friction of rubber
 - High dense plasma irradiation to CIIR
 - $\cdot\,$ UV ray irradiation to TPE with PFPE

Industrial products and issue

Issue: Adhesion to mold or conveying equipment

Why rubber can stick to surface?

Another issue for medicine bottle

Issue:

Strong adhesion of rubber for medicine bottle against mold

Various plasma treatment

Pros - Ultra low friction of Carbon Nitride (CNx) and Low adhesion and friction of rubber COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

Prof. N. Umehara

Adhesion force measurement

Adhesion force appartus

Basic 14 Micro-Nano Tribology

- Ultra low friction of Carbon Nitride (CNx) and Low adhesion and friction of rubber - COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

Prof. N. Umehara

Effect of plasma irradiation on adhesion

Treatment time Ion beam >> surface-wave plasma treatment Surface-wave plasma treatment reduced adhesion almost 0 N between stainless steel ball and CIIR sheet

Contact microscope device

Real contact area

Basic 14 Micro-Nano Tribology - Ultra low friction of Carbon Nitride (CNx) and Low adhesion and friction of rubber -COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

Effect of real contact area on adhesion

Basic 14 Micro-Nano Tribology - Ultra low friction of Carbon Nitride (CNx) and Low adhesion and friction of rubber -COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

Surface topography of rubber surface

Sputter coated with platinum for 1 mintues

(a)

The subsurface on the CIIR looks less granular and generally has a smoother shape (c) Growing rougher as the treating time increasing

(d)

Microwave power pattern has changed

- Roughest surface observed

The cross-section FE-SEM micrographs of oxygen plasma treated to CIIR rubber for (a) Untreated (b) 200 W, 5 min (c) 200 W, 10 min and, (d) 200 W 20 min

Basic 14 Micro-Nano Tribology

Prof. N. Umehara

Surface roughness of argon plasma treated to CIIR rubber

3D laser scanning microscope images of CIIR sheets after oxygen plasma treatment with 200 W at a gas pressure of 30 Pa for treatment times of (a)1, (b)5, (c)10, and (d)15 min.

Young's modulus of CIIR rubber

Basic 14 Micro-Nano Tribology

Prof. N. Umehara

Explanation by the GW model

Comparison between GW model & real contact area (Stainless steel ball and CIIR contact)

Basic 14 Micro-Nano Tribology

- Ultra low friction of Carbon Nitride (CNx) and Low adhesion and friction of rubber -

Prof. N. Umehara

COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

Outline & Summary

- 1.Ultra low friction of Carbon Nitride (CNx)
 - Mechanism Self modification in nm thickness
 - Effect of carbon overcoat on friction not need running-in
 - Effect of Ultraviolet (UV) ray irradiation on friction More rapid running-in by 1/10, Lower minimum friction by 1/10
- 2. Low adhesion and friction of rubber
 - High dense plasma irradiation to CIIR
 by Larger E & Roughness Smaller Ar
 - UV ray irradiation to TPE with PFPE

Tendency in Medical syringe products

Replacing glass syringes with plastic ones is desired.

Issues in advanced plastic syringe

To design the plastic syringe without the silicone oil

Photochemically fluorination

Effect of Photochemically fluorination on friction

Friction test in flat specimen

W=1 N

COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

Pros - Ultra low friction of Carbon Nitride (CNx) and Low adhesion and friction of rubber

Prof. N. Umehara

Effect of Photochemically fluorination on friction

Friction test in TPE gasket

Outline & Summary

- 1. Ultra low friction of Carbon Nitride (CNx)
 - Mechanism Self modification in nm thickness
 - Effect of carbon overcoat on friction

not need running-in

- Effect of Ultraviolet (UV) ray irradiation on friction More rapid running-in by 1/10, Lower minimum friction by 1/10
- 2. Low adhesion and friction of rubber
 - High dense plasma irradiation to CIIR <1/100 by Larger E & Roughness Smaller Ar
 - UV ray irradiation to TPE with PFPE

by Larger E 🔿 Smaller Ar, Smaller surface energy

1/4

