Basic 12 Micro-nano Thermodynamics

Prof. I. Naruse Dept. of Mechanical Science & Engineering Nagoya University

Thermodynamics

•••Progress limitation of phenomenon (Process)

Equilibrium

Evaluation standard of system design

- 1) Thermodynamics for material
- 2) Thermodynamics for process
- 3) Thermodynamics for system

1) Thermodynamics for material

Energy of material: *E* Entropy of material: *S*

The number of material phases Concentrations of material in each phase Temperature Pressure

Unit of energy: [J], [J/s] Unit of entropy: [J/K], [J/(K•s)]

Ex. 1 Water in a flask (Batch)

Ex. 2 Water flow into a tube (Continuous)

 •Volume changeable vessel: Enthalpy H •Constant volume vessel: Internal energy U What are energy and entropy?

What are energy and entropy? Quantity of energy:

Enthalpy (Internal energy)

Quality of energy:

Expression by both enthalpy (Internal energy) and entropy

1) Calculation of enthalpy

Standard generation heat of material:
 ΔH^0_{298} [J/mol]Ex.CH4-74.5 kJ/molC and N20kJ/mol(Pure material consisting of same element)

Enthalpy of material at temperature of *T* and the at atmospheric pressure : H^0_T

$$H_T^0 = n\Delta H_{298}^0 + n\int_{298}^T C_{p,m} \,\mathrm{d}\,T$$

n: mol number of material [mol]

$$C_{p,m}$$
: Heat capacity of material [J/(K_mol)]
 $C_{p,m} = a + bT + cT^2$

2) Calculation of entropy

Absolute entropy of material: S⁰₂₉₈ [J/(K· mol)]

Ex. CH_4 186 [J/(K·mol)] Absolute entropy of material at temperature of *T* and at the atmospheric pressure : S_7^0

$$S_T^0 = S_{298}^0 + \int_{298}^T \frac{C_{p,m}}{T} \, \mathrm{d} T$$

$\Delta H = H_{out} - H_{in}$ Resign 12 Micro-mano Thermodynamics

Ex. Heating process

Continuous process

Enthalpy change before and after: ΔH

$$\Delta H = H_{out} - H_{in}$$

Ex. Heating process

Continuous process

Entropy change $\Delta S = S_3 - (S_1 + S_2)$ ΔH : **Intermediary energy**

Direction : Positive or Negative of ΔH (Positive: Energy input, Negative Energy output) Quantity : Absolute value of ΔH

Quality:Degree of low level d $d = \frac{\Delta S}{\Delta H}$ [1/K]

Degree of low level: Larger *d* indicates lower intermediary energy.

What is the "Degree of low level"?

Assumption: Evolution of 1 J intermediary energy

Temperature of heat source1000K300K

d 1/1000 < 1/300

Higher level of intermediary energy

Explanation of "Degree of low level" by Water model

Quantity of water = Mass of water

Degree of low level —> Position of vessel

Before change

After change

Change of Gibbs' free energy $\Delta G = \Delta H - T \Delta S$

Process	Quantity of energy	Tempera- ture	ΔH	ΔS	Degree of low level <i>d</i>
Heat source	Output Q	Т	<i>Q</i>	Q/T	1 <i>/T</i>
Heat sink	Input Q	Τ	Q	Q/T	1 <i>/T</i>
Work source	Output W		-w	0	Ο
Work sink	Input W	_	W	0	Ο

•Heat source and sink ••• No work function $\Delta G = 0$

 $\Delta G = \Delta H - T\Delta S - \frac{\Delta S}{\Delta H} = \frac{\Delta H}{T}$

Work source and sink No thermal function

ΔS=0

Even if the Work source or sink evolves or takes energy, Respectively, the quality of them dose not change.

Basic 12 Micro-nano ThermodynamicsProf. I. NaruseCOE for Education and Research of Micro-Nano Mechatronics, Nagoya University

 $\frac{\Delta S}{\Delta H}$

3) Thermodynamics for system

Ex. Gas heating system for hot water

Thermodynamics for system

Rules Only the materials can cross the system boundary.

The intermediary energy (Heat and Work) must not cross the system boundary.

The 1st law of thermodynamics

(Conservation low of energy)

$$\sum_{i} \Delta H_{j} = 0$$

The 2nd law of thermodynamics (Increase law of entropy)

$$\sum_{j} \Delta S_{j} \ge 0$$

Explanation of the 1st and 2nd law of thermodynamics by Water model

$\Delta H \rightarrow$ Change of water mass: Δm

 $d \rightarrow Position of water$

The 2nd law of thermodynamics (Increase law of entropy) $\sum_{j} \Delta S_{j} = \sum_{j} d_{j} \Delta m_{j} = d_{1} \Delta m_{1} + d_{2} \Delta m_{2} + d_{3} \Delta m_{3} = 1 \ge 0$

Applications of thermodynamics

Ex. Combustion of H₂ with O₂ $H_2+1/2O_2 \rightarrow H_2O_2$

Relationship between enthalpy change (ΔHr) and reaction heat (Qr)

Energy change by reaction: ΔH_r

Energy change in heat sink: ΔH_T

From the 1st law $\Delta H_r + \Delta H_T = 0$

$$\Delta H_{\tau} = \mathbf{Q}_{r} \quad \longrightarrow \quad \Delta H_{r} = -\mathbf{Q}_{r}$$

Exothermic reaction

 $Q_r > 0 \longrightarrow \Delta H_r$: Negative

Endothermic reaction

Exothermic reaction system

Content of enthalpy change: ΔH

Endothermic reaction system

The condition for the endothermic reactions is the same as the for the exothermic reactions.

Endothermic reaction ΔHr>0

Driving force for reaction

Ex. 1 Thermodynamic analysis of electric decomposition of water

Experimental result $W \leq \Delta H_r$ Electric decomposition of water occurs by electric energy less than the theoretical heat of reaction.

Why?

The reactor takes thermal energy of $T\Delta S_r$ from atmosphere.

Experimental results:

Consumed electricity ≒ Theoretical electricity The electricity Is reduced at high atmospheric temperature.

Ex. 2 Thermodynamic analysis of heat pump

Room heating

Heating rate = $1 kW = (1 kJ/s) = Q_h$

Comparison Joule heating

$W = 1 \, \mathrm{kW}$

Ex.3 Thermodynamic analysis of power generation

COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

$$W - Q_h + Q_l = 0$$

$$-\frac{Q_h}{T_h} + \frac{Q_l}{T_l} \ge 0$$

$$W - Q_h = Q_h - W \ge \frac{T_l}{T_h} Q_h$$

Heat from high temp. heat source: Q_h

Converted electric energy: W

Change of Gibbs free energy

$\Delta G = \Delta H - T \Delta S$ Temperature: **T** \longrightarrow Ambient temp. **T**₀(=298K)

 $\Delta \varepsilon = \Delta H - T_0 \Delta S$

$\Delta \varepsilon : \text{Change of exergy [J], [J/s]}$ The 2nd law $\sum_{j} \Delta S_{j} \ge 0$ $\sum_{j} \Delta \varepsilon_{j} = \sum_{j} \left(\Delta H_{j}^{j} - T_{0} \Delta S_{j} \right) = -T_{0} \sum_{j} \Delta S_{j} \le 0$ Decreasing law of exergy

Explanation of energy level by Water model

The 2nd law (Decreasing law of exergy) $\sum_{i} \Delta \varepsilon_{j} = \sum_{i} A_{j} \Delta m_{j} = A_{1} \Delta m_{1} + A_{2} \Delta m_{2} + A_{3} \Delta m_{3} = -1 \le 0$

Process	Quantity of energy	Tempera- ture	ΔH	$\otimes oldsymbol{arepsilon}$	Α	
Heat source	Output Q	Τ	— <i>Q</i>	$-rac{T-T_0}{T}Q$	$\frac{T-T_0}{T}$	
Heat sink	Input Q	Τ	Q	$\frac{T-T_0}{T}Q$	$\frac{T-T_0}{T}$	
Work source	Output W	_	-w	$-\mathbf{W}$	1	
Work sink	Input W		W	W	1	

 $\Delta \varepsilon = \Delta H - T_0 \Delta S$

Energy level of work source and sink = 1

Energy level of heat source and sink \longrightarrow Carnot efficiency at $T_1 = T_0$

Temp. of heat source and sink = T_0 Temp. of heat source and sink = ∞

Corresponding to work source and sink

A=0

A=1

Thermodynamic compass?

How to use the thermodynamic vector

Process examples

Heated type Heating type **Cooling type**

Cooled type

Separation type

Mixing type

Temp. increase from 100°C to 200°C Temp. decrease from 200°C to 100°C Temp. increase from -50°C to -30°C Temp. decrease from -30°C to -50°C Separation of air to N_2 and O_2

Mixing of N₂ with O₂

Process selection against target process

Max. exergy loss: Utilization of electricity

Example of vectors of endothermic reaction

Example of vectors of exothermic reaction

