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Outline and procedure of atomistic simulations

Start

Initial atomic positions and velocities

Calculation of energy E

C l l ti f t i f F

(1)

(2) Calculation of atomic force F

Updating atomic positions r

(2)

(3) Updating atomic positions r

Physical quantities (T, ij, …)

(3)

Termination 
condition

No
condition

End

Yes
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(1) Calculation of energy E

Empirical methodNon-empirical／First-principles
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: Exchange-correlation
energy

 : Angle among atom
, , and 

 Based on quantum mechanics
 High accuracy

 Based on empirical potential
 Low accuracy

 High computational cost  Low computational cost
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(2) Calculation of atomic force F
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（ : Index of atoms i : or di t ）（ : Index of atoms,   i : x-, y-, or z-coordinate）

Ex)  Lennard-Jones potential （ : Material constant）
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(3) Updating atomic positions
Molecular Dynamics

 Energy minimization by an  Numerical integration of the
Molecular Mechanics

 Energy minimization by an 
optimization algorithm

 Final (converged) atomic position 
i i t t

 Numerical integration of  the
equation of motion

 Atomic trajectory is important
is important

Ex) Steepest descent method Ex) Verlet algorithm
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Example of atomistic simulations ~backgrounds~

• Boron nitride nanotube (BNNT)
1994 : Theoretical prediction (A R bi l PRB EPL)– 1994 : Theoretical prediction (A. Rubio et al., PRB, EPL)

– 1995 : Experimental synthesis (N. G. Chopra et al., Science)

• Structure
– Multi-wall (MW) > Single-wall (SW)
– Zigzag > Armchair, Chiral
– Interwall spacing : 0.33-0.34 nm

Multi-wall Single-wall

• Properties
High mechanical strength– High mechanical strength

– High thermochemical stability
– Electrically insulating unlike carbon nanotubes

Zigzag
(n,0)

Armchair
(n,n)

Chiral
(n,m)

– Electrically insulating, unlike carbon nanotubes
independent of diameters, chiralities and the number of walls

Nanocoatings for conductive nanowires nanotubes etc
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Example of atomistic simulations ~backgrounds~

• Bending (experiment) Bai et al., Nano Lett., 7, 632 (2007)

Insulator

S i d t

– Deformation-induced electronic changes：

Semiconductor

– Deformation-induced electronic changes：
Mechanism? Deformation modes?  Feasibility?

This work:
① Electronic structures of SWBNNTs subjected to tension, torsion, 

and flattening
② Flattening-induced electronic changes in MWBNNTs
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Example of atomistic simulations ~backgrounds~

Conduction band

Conduction band
minimum (CBM)

Energy of CBM : ECBM

Energy gap : Eg = ECBM – EVBM

Valence band
maximum (VBM)

Energy of VBM : EVBM

Valence band

Conductor Semiconductor Insulator

Electron
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Conductor Semiconductor Insulator



① Electronic structures of SWBNNTs① Electronic structures of SWBNNTs 
subjected to tension, torsion, and flattening

Y. Kinoshita and N. Ohno, Phys. Rev. B, 82, 085433 (2010)
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Simulation model
• (n,0) zigzag， n = 6, 8, 10

a : Nearest interatomic distance = 0.145 nma : Nearest interatomic distance  0.145 nm
Lv : Length of vacuum region = 0.5 nm
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Simulation procedure

• Deformation analyses
LL

0
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z

zz
zz L
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360

Tensile strain

Specific angle
0

360

zz LnN
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DD

Specific angle
of twist (deg/nm)

0

0

D
DD 

Flattening ratio

• Analytical condition
– First-principlesFirst principles
– DFT-GGA (PW91)
– Ultrasoft pseudopotentialp p
– Cut-off energy : 350 eV
– k-points: 30 points (-X)
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Energy band structure of (8,0) under flattening

CBMCBM

VBM

 VBM and CBM are located at the  pointVBM and CBM are located at the  point
 Decrease in CBM energy Decrease in the energy gap

※ Monotonic decrease in ECBM also under tension & torsion
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Change in the energy gap

 T i d t i Tension and torsion
• The energy gap decreases almost linearly.

The rate of decrease hardly depends on the diameter• The rate of decrease hardly depends on the diameter
 Flattening

• The energy gap decreases quadratically or exponentially• The energy gap decreases quadratically or exponentially
• The amount of decrease significantly depends on the diameter
• A few times larger decrease in E than tension and torsion

Basic 8  Micro-Nano Materials Science and Analysis    Assistant Prof. Y. Kinoshita and Prof. N. Ohno
-Atomistic simulations in materials science and engineering-
COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

• A few times larger decrease in Egap than tension and torsion



CBM charge density

• Bond formation between 
neighboring boron atoms

Decrease in CBM energy

• Bond strength：
Flattening＞Tension TorsionFlattening＞Tension, Torsion
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Deformation force

• Required force： Flattening << Tension, Torsion
• Forces rapidly increase later under flattening
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Energy gap vs. Deformation force

 Flattening with a force smaller than that applied for g pp
tension or torsion leads to the larger decrease in Egap

 Flattening offers a larger obtainable range of Egap than 
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tension and torsion



Feasibility of flattening BNNTs
 Flattening of CNTs by AFM tip Barboza et al., PRL, 102, 025501 (2009)
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– When = 0.4,  R = 30 nm ,
• (6,0) CNT:     F = 15.4 N/m （Barboza et al.）
• (6,0) BNNT:   F = 16.8 N/m （This work）( )

Flattening BNNTs is technically feasibleFlattening BNNTs is technically feasible.
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Summary ①

Electronic structures of (n,0) SWBNNTs under tension, torsion, 
and flattening have been investigated by first-principles

• Tension, torsion, and flattening decrease the energy 

and flattening have been investigated by first-principles.

, , g gy
gaps of SWBNNTs.

Fl tt i ith f ll th th t li d f• Flattening with a force smaller than that applied for 
tension or torsion causes a larger decrease in the 
energy gapenergy gap.

• The force required for flattening SWBNNTs is not q g
unrealistic.
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②②Flattening‐induced electronic changes in MWBNNTs

Y. Kinoshita, S. Hase, and N. Ohno, Phys. Rev. B, 80, 125114 (2009) 
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Simulation model
• (n,0) zigzag, ni+1 – ni = 8,   i : i-th tube from the innermost

most stable (S. Okada et al., PRB, 65, 165410 (2002))

– Single‐wall (SW)    :  (5,0),  (13,0),  (21,0)
– Double‐wall (DW)  :  (5,0)@(13,0),  (13,0)@(21,0)( ) ( , )@( , ), ( , )@( , )
– Triple‐wall (TW)     :  (5,0)@(13,0)@(21,0)

※Three dimensional periodic boundary condition
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※Three-dimensional periodic boundary condition



Simulation procedure

• Flattening deformation
Equilibrium condition– Equilibrium condition

Atomic force < 0.01 eV/Å
Stress  < 0 01 GPaStress zz < 0.01 GPa

– Under flattening
Atomic force < 0 01 eV/ÅAtomic force < 0.01 eV/Å
Strain zz = 0

• Analytical condition
– First-principles

0

D
DD 

Flattening ratio : 

– DFT-GGA (PW91)
– Ultrasoft pseudopotential 0D

0D

: Diameter of the outermost tube
at equilibrium

– Cut-off energy : 350 eV
– k-points: 1 x 1 x 4

at equilibrium

D : Distance between 
imaginary walls
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Energy band of (13,0) SW

hardly changesy g

 E is the main factor in determining E ECBM is the main factor in determining Eg

※Tendency of change in band structure : 
(5 0) SW (21 0) SW ≈ (13 0) SW

Basic 8  Micro-Nano Materials Science and Analysis    Assistant Prof. Y. Kinoshita and Prof. N. Ohno
-Atomistic simulations in materials science and engineering-
COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

(5,0) SW, (21,0) SW ≈ (13,0) SW



Energy band of (13,0)@(21,0) DW

hardly changesy g

 (13,0)@(21,0) DW ≈ SWs
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Energy band of (5,0)@(13,0) DW

hardly changesy g

 ECBM is the main factor in determining Eg

※Tendency of change in band structure : 
(5 0)@(13 0)@(21 0) TW ≈ (5 0)@(13 0) DW
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(5,0)@(13,0)@(21,0) TW ≈ (5,0)@(13,0) DW



Energy gap vs. Flattening ratio

 Eg in the SWs :g

* Monotonic decrease
* (5,0) > (13,0) > (21,0)( , ) ( , ) ( , )

 Eg in (13,0)@(21,0) DW
* M t i d* Monotonic decrease
* > (13,0) SW, (21,0) SW

 Eg in (5,0)@(13,0) DW and TW
* Increase and then decrease
* ↑ to ↓, earlier in TW

 E –  curves : MWs ≠ SWs Eg –  curves : MWs ≠ SWs
Effects of interwall interaction
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CBM charge density of SWs and (13,0)@(21,0) DW

Bond formationBond formation
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0.003



CBM charge density of SWs and (13,0)@(21,0) DW

(

Electronic bonds : (5,0) > (13,0) > (21,0)
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CBM charge density of SWs and (13,0)@(21,0) DW

Electronic bonds : 
(13,0) < (13,0)@(21,0)

 < in
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CBM charge density of (5,0)@(13,0) DW

Charge transfer from inner to outer
Bond formationBond formation

0.003
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CBM charge density of (5,0)@(13,0)@(21,0) TW

Charge transfer Bond formationg Bond formation

0.003
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CBM charge density of (5,0)@(13,0) DW and TW

(5,0)@(13,0) DWBNNT (5,0)@(13,0)@(21,0) TWBNNT

Basic 8  Micro-Nano Materials Science and Analysis    Assistant Prof. Y. Kinoshita and Prof. N. Ohno
-Atomistic simulations in materials science and engineering-
COE for Education and Research of Micro-Nano Mechatronics, Nagoya University



Summary ②
Electronic structures of SW- and MWBNNTs under flattening 
compression have been investigated using first-principles.

• Single-walled BNNTs (SWBNNTs) :
– The energy gap monotonically decreases with increasing flatteningThe energy gap monotonically decreases with increasing flattening 

deformation.
– The amount of the decrease becomes smaller in proportion to the 

tube diameter.

• Multi-walled BNNTs (MWBNNTs) :• Multi-walled BNNTs (MWBNNTs) : 
– nin > nc : The energy gap monotonically decreases.
– ni < n : The energy gap first increases and then decreasesnin < nc : The energy gap first increases and then decreases.

Innermost tube : (nin , 0) zigzag
n : Critical value an interger between 5 and 13nc : Critical value, an interger between 5 and 13.
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