# Basic 8 Micro-Nano Materials Science and Analysis -Atomistic simulations in materials science and engineering-

### Assistant Prof. Y. Kinoshita and Prof. N. Ohno

Dept. of Comp. Sci. Eng. and Dept. of Mech. Sci. Eng., Nagoya Univ., Japan





## **Table of Contents**

- Outline and procedure of atomistic simulations
- Examples of atomistic simulations
  - Electronic structures of single-walled boron nitride nanotubes subjected to tension, torsion, and flattening

[Y. Kinoshita and N. Ohno, Phys. Rev. B, 82, 085433 (2010)]

② Flattening-induced electronic changes in multi-walled boron nitride nanotubes

[Y. Kinoshita, S. Hase, and N. Ohno, Phys. Rev. B, 80, 125114 (2009)]

References





### **Outline and procedure of atomistic simulations**







## (1) Calculation of energy E

Non-empirical / First-principles  $E = \int v_{\text{ext}}(\mathbf{r})\rho(\mathbf{r})d\mathbf{r} + T[\rho(\mathbf{r})]$  $+\frac{1}{2}\int \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|}d\mathbf{r}'d\mathbf{r} + E_{\rm xc}[\rho(\mathbf{r})]$  $\rho(\mathbf{r})$ : Charge density  $v_{\rm ext}(\mathbf{r})$ : External field  $T[\rho(\mathbf{r})]$ : Kinetic energy  $E_{\rm xc}[\rho(\mathbf{r})]$ : Exchange-correlation energy Based on quantum mechanics • High accuracy High computational cost

**Empirical method**  $E = \sum_{\alpha} \sum_{\beta} \phi(r^{\alpha\beta})$ (2-body)  $E = \sum_{\alpha} \sum_{\beta} \sum_{\gamma} \phi(r^{\alpha\beta}, r^{\alpha\gamma}, \theta^{\alpha\beta\gamma})$ (3-body) (3-body)  $r^{\alpha\beta}$ : Distance between atom  $\alpha$  and  $\beta$  $\theta^{\alpha\beta\gamma}$  : Angle among atom  $\alpha$ ,  $\beta$ , and  $\gamma$ 

- Based on empirical potential
- Low accuracy
- Low computational cost





## (2) Calculation of atomic force $F^{\alpha}$

$$F^{\alpha} = -\nabla E, \qquad F_i^{\alpha} = -\frac{\partial E}{\partial r_i^{\alpha}}$$

( $\alpha$ : Index of atoms, i : x-, y-, or z-coordinate)

Ex) Lennard-Jones potential ( $\varepsilon$ ,  $\sigma$ : Material constant)







## (3) Updating atomic positions

**Molecular Mechanics** 

- Energy minimization by an optimization algorithm
- Final (converged) atomic position is important



#### Molecular Dynamics

- Numerical integration of the equation of motion
- Atomic trajectory is important







## Example of atomistic simulations ~backgrounds~

- Boron nitride nanotube (BNNT)
  - 1994 : Theoretical prediction (A. Rubio et al., PRB, EPL)
  - 1995 : Experimental synthesis (N. G. Chopra et al., Science)
- Structure
  - Multi-wall (MW) > Single-wall (SW)
  - Zigzag > Armchair, Chiral
  - Interwall spacing : 0.33-0.34 nm
- Properties
  - High mechanical strength
  - High thermochemical stability
  - Electrically insulating, unlike carbon nanotubes
     independent of diameters, chiralities and the number of walls
     Nanocoatings for conductive nanowires, nanotubes etc.



## Example of atomistic simulations ~backgrounds~

• Bending (experiment) Bai et al., Nano Lett., 7, 632 (2007)



- Deformation-induced electronic changes:
  - Mechanism? Deformation modes? Feasibility?

#### <u>This work:</u>

- Electronic structures of SWBNNTs subjected to tension, torsion, and flattening
- 2 Flattening-induced electronic changes in MWBNNTs





### Example of atomistic simulations ~backgrounds~







### Electronic structures of SWBNNTs subjected to tension, torsion, and flattening

Y. Kinoshita and N. Ohno, Phys. Rev. B, 82, 085433 (2010)





## Simulation model

• (n,0) zigzag, n = 6, 8, 10



*a* : Nearest interatomic distance = 0.145 nm  $L_v$  : Length of vacuum region = 0.5 nm





## Simulation procedure

• Deformation analyses

Tensile strain 
$$\varepsilon_{zz} = \frac{L_z - L_{z0}}{L_{z0}}$$

Specific angle of twist (deg/nm)  $\theta = \frac{360}{nN_z L_{z0}}$ 

Flattening ratio  $\eta = -\frac{1}{2}$ 

$$\gamma = \frac{D_0 - D}{D_0}$$

- Analytical condition
  - First-principles
  - DFT-GGA (PW91)
  - Ultrasoft pseudopotential
  - Cut-off energy : 350 eV
  - k-points: 30 points (Γ-X)





## Energy band structure of (8,0) under flattening



- VBM and CBM are located at the  $\Gamma$  point

% Monotonic decrease in  $E_{\rm CBM}$  also under tension & torsion





## Change in the energy gap



- Tension and torsion
  - The energy gap decreases almost linearly.
  - The rate of decrease hardly depends on the diameter
- Flattening
  - The energy gap decreases quadratically or exponentially
  - The amount of decrease significantly depends on the diameter
  - A few times larger decrease in  $E_{gap}$  than tension and torsion





## **CBM charge density**



- Decrease in CBM energy
- Bond strength: Flattening>Tension, Torsion



 $\eta = 0.15$ 

 $\eta = 0.30$ 

(d) (6,0)

 $\eta = 0.45$ 

Flattening

Basic 8 Micro-Nano Materials Science and Analysis Assistant Prof. Y. Kinoshita and Prof. N. Ohno -Atomistic simulations in materials science and engineering-COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

 $\eta = 0.45$ 

(f) (10,0)

 $\eta = 0.45$ 

(e)(8,0)

### **Deformation force**



- Required force: Flattening << Tension, Torsion
- Forces rapidly increase later under flattening





## Energy gap vs. Deformation force



- Flattening with a force smaller than that applied for tension or torsion leads to the larger decrease in E<sub>gap</sub>
- Flattening offers a larger obtainable range of  $E_{\rm gap}$  than tension and torsion





## Feasibility of flattening BNNTs

• Flattening of CNTs by AFM tip Barboza et al., PRL, 102, 025501 (2009)



- When  $\eta = 0.4$ , R = 30 nm
  - (6,0) CNT: F = 15.4 N/m (Barboza et al.)
  - (6,0) BNNT: F = 16.8 N/m (This work)

#### Flattening BNNTs is technically feasible.





# Summary (1)

Electronic structures of (n,0) SWBNNTs under tension, torsion, and flattening have been investigated by first-principles.

- Tension, torsion, and flattening decrease the energy gaps of SWBNNTs.
- Flattening with a force smaller than that applied for tension or torsion causes a larger decrease in the energy gap.
- The force required for flattening SWBNNTs is not unrealistic.



### ②Flattening-induced electronic changes in MWBNNTs

Y. Kinoshita, S. Hase, and N. Ohno, Phys. Rev. B, 80, 125114 (2009)





## Simulation model

- (*n*,0) zigzag, <u>n<sup>i+1</sup> n<sup>i</sup> = 8</u>, *i*: *i*-th tube from the innermost
   → most stable (S. Okada et al., PRB, 65, 165410 (2002))
  - Single-wall (SW) : (5,0), (13,0), (21,0)
  - Double-wall (DW) : (5,0)@(13,0), (13,0)@(21,0)
  - Triple-wall (TW) : (5,0)@(13,0)@(21,0)



\*Three-dimensional periodic boundary condition

## Simulation procedure

- Flattening deformation
  - Equilibrium condition Atomic force < 0.01 eV/Å Stress  $\sigma_{zz}$  < 0.01 GPa
  - Under flattening Atomic force < 0.01 eV/Å Strain  $\varepsilon_{zz} = 0$
- Analytical condition
  - First-principles
  - DFT-GGA (PW91)
  - Ultrasoft pseudopotential
  - Cut-off energy : 350 eV
  - k-points: 1 x 1 x 4



Flattening ratio : 
$$\eta = \frac{D_0 - D}{D_0}$$

- $D_0$  : Diameter of the outermost tube at equilibrium
- *D* : Distance between imaginary walls





## Energy band of (13,0) SW



 $\blacksquare$   $E_{\rm CBM}$  is the main factor in determining  $E_{\rm g}$ 

\* Tendency of change in band structure : (5,0) SW, (21,0) SW  $\approx$  (13,0) SW





## Energy band of (13,0)@(21,0) DW



(13,0)@(21,0) DW ≈ SWs





## Energy band of (5,0)@(13,0) DW



 $\blacksquare$   $E_{\rm CBM}$  is the main factor in determining  $E_{\rm g}$ 

% Tendency of change in band structure :  $(5,0)@(13,0)@(21,0) TW \approx (5,0)@(13,0) DW$ 







- $\Delta E_{\rm g}$  in the SWs :
  - \* Monotonic decrease
  - (5,0) > (13,0) > (21,0)
- $\Delta E_{\rm g}$  in (13,0)@(21,0) DW
  - \* Monotonic decrease
  - \* > (13,0) SW, (21,0) SW
- $\Delta E_{g}$  in (5,0)@(13,0) DW and TW
  - \* Increase and then decrease

\*  $\uparrow$  to  $\downarrow$ , earlier in TW

<sup>0.6</sup>  $= E_g - \eta$  curves : MWs  $\neq$  SWs Effects of interwall interaction







- $\Delta E_{\rm g}$  in the SWs :
  - \* Monotonic decrease
  - \* (5,0) > (13,0) > (21,0)
- △E<sub>g</sub> in (13,0)@(21,0) DW
   \* Monotonic decrease
   \* > (13,0) SW, (21,0) SW
- $\Delta E_{\rm g}$  in (5,0)@(13,0) DW and TW \* Increase and then decrease \*  $\uparrow$  to  $\downarrow$ , earlier in TW

0.6 E<sub>g</sub> - η curves : MWs ≠ SWs
 ▶ Effects of interwall interaction







- $\Delta E_{\rm g}$  in the SWs :
  - \* Monotonic decrease
  - \* (5,0) > (13,0) > (21,0)
- $\Delta E_{\rm g}$  in (13,0)@(21,0) DW
  - \* Monotonic decrease
  - \* > (13,0) SW, (21,0) SW
- $\Delta E_g$  in (5,0)@(13,0) DW and TW \* Increase and then decrease \*  $\uparrow$  to  $\downarrow$ , earlier in TW
- $E_{\rm g} \eta$  curves : MWs ≠ SWs ⇒ Effects of interwall interaction







- $\Delta E_{\rm g}$  in the SWs :
  - \* Monotonic decrease
  - \* (5,0) > (13,0) > (21,0)
- ▲ E<sub>g</sub> in (13,0)@(21,0) DW
   \* Monotonic decrease
   \* > (13,0) SW, (21,0) SW
- ΔE<sub>g</sub> in (5,0)@(13,0) DW and TW
   \* Increase and then decrease
   \* ↑ to ↓, earlier in TW

■  $E_g - \eta$  curves : MWs ≠ SWs ⇒ Effects of interwall interaction







- $\Delta E_{\rm g}$  in the SWs :
  - \* Monotonic decrease
  - \* (5,0) > (13,0) > (21,0)



- \* Monotonic decrease
- \* > (13,0) SW, (21,0) SW
- $\Delta E_g$  in (5,0)@(13,0) DW and TW \* Increase and then decrease \*  $\uparrow$  to  $\downarrow$ , earlier in TW
- <sup>0.6</sup>  $E_g \eta$  curves : MWs ≠ SWs ⇒ Effects of interwall interaction





### CBM charge density of SWs and (13,0)@(21,0) DW





Basic 8 Micro-Nano Materials Science and Analysis Assistant Prof. Y. Kinoshita and Prof. N. Ohno -Atomistic simulations in materials science and engineering-COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

### CBM charge density of SWs and (13,0)@(21,0) DW





### **CBM** charge density of SWs and (13,0)@(21,0) DW



COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

### **CBM** charge density of (5,0)@(13,0) DW



COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

### **CBM charge density of (5,0)@(13,0)@(21,0) TW**



-Atomistic simulations in materials science and engineering-

COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

### CBM charge density of (5,0)@(13,0) DW and TW









Electronic structures of SW- and MWBNNTs under flattening compression have been investigated using first-principles.

- Single-walled BNNTs (SWBNNTs) :
  - The energy gap monotonically decreases with increasing flattening deformation.
  - The amount of the decrease becomes smaller in proportion to the tube diameter.
- Multi-walled BNNTs (MWBNNTs) :
  - $n_{\rm in} > n_{\rm c}$ : The energy gap monotonically decreases.
  - $n_{\rm in} < n_{\rm c}$ : The energy gap first increases and then decreases.  $\begin{pmatrix}
    {\rm Innermost\ tube: (n_{\rm in}, 0)\ zigzag} \\
    n_{\rm c}: Critical\ value, an\ interger\ between\ 5\ and\ 13.
    \end{pmatrix}$





## References

- Atomistic simulations
  - Richard M. Martin, *Electronic structure*, Cambridge, (2004)
  - J. M. Thijssen, Computational Physics, Cambridge, (2007)
- Research examples
  - A. Rubio et al., Phys. Rev. B, 49, 5081 (1994)
  - X. Blase et al., Europhys. Lett., 28, 335 (1994)
  - N. G. Chopra et al., Science, 269, 966 (1995)
  - S. Okada et al., *Phys. Rev. B*, 65, 165410 (2002)
  - X. Bai et al., Nano. Lett., 7, 632 (2007)
  - A. P. M. Barboza et al., Phys. Rev. Lett., 102, 025501 (2009)
  - Y. Kinoshita, S. Hase, and N. Ohno, Phys. Rev. B, 80, 125114 (2009)
  - Y. Kinoshita and N. Ohno, Phys. Rev. B, 82, 085433 (2010)

