Basic 7 Micro-Nano Assembly

Prof. F. Arai Dept. of Micro/Nano Systems Engineering Nagoya University

1. Introduction

- 2. Interaction force in micro-nano world
- 3. Elemental techniques Micro-nano manipulation Connection Self-assembly

4. Summary

COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

Approach of Micro-Nano Technology

Basic 7 Micro-Nano Assembly COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

Δ

Size and scale of structures in Micro-Nano World

Basic 7 Micro-Nano Assembly COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

Comparison of Workspace (Microscope)

Properties	ltems	AFM	STM	SEM	ОМ
Manipulation	Interaction with object	Contact Noncontact Intermittent contact	noncontact	Noncontact	Noncontact
Imaging	Imaging principle	Interatomic force	Tunneling current	Electron emission	Light-matter interaction
	Visual resolution	> 0.1 nm	> 0.1 nm	> 1 nm	> 100 nm
	Objective type	All	Conductor Semi- conductor	Conductor Semi- conductor	All
	Dimensions	3D	3D	2D	2D
Real-time sensing		Force/image	Image	Image	Image

Interactive Force in Micro-Nano Word

(a) Van der Waals force

(c) Electric force

(d) Gravity force

Basic 7 Micro-Nano Assembly Prof. F. Arai COE for Education and Research of Micro-Nano Mechatronics, Nagoya University Energy of interaction between atoms (ex. Dispersion effect)

$$\mathcal{E} = -\frac{\Lambda}{z^6}$$

z: distance between atoms Λ : London-wan der Waals constant

Energy of interaction between particles

$$E = -\int_{V_1} d\tau_1 \int_{V_2} d\tau_2 \frac{n^2 \Lambda}{z^6}$$

 V_1 , V_2 : volume of particles n: number of atoms

Van der walls force

$$F_{vdw} = \frac{\partial E}{\partial z}$$

1. Theory of Hamaker

Interaction between two objects is acquired by adding interactions between all molecules.

2. Theory of Lifshitz

Interaction between molecules is followed by London force.

$$S_{ABC} = \frac{\pi r}{d} \left\{ r_1^2 - (d - r)^2 \right\}$$
$$V_{ABC} = \frac{\pi r}{d} \left\{ r_1^2 - (d - r)^2 \right\} \Delta r$$

Basic 7 Micro-Nano Assembly Prof. F. Arai COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

$$E_{1-P} = -\int_{d-r_1}^{d+r_1} \frac{\Lambda \pi n}{d} \cdot \frac{1}{r^5} \left\{ r_1^2 - (d-r)^2 \right\} \Delta r$$

Basic 7 Micro-Nano Assembly COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

Number of atoms in V_{DEF}

$$N_{VDEF} = \frac{\pi n d}{R} \left\{ r_2^2 - (R - d)^2 \right\} \Delta d$$

Wan der Waals energy between Sphere1 and Sphere2

$$E_{1-2} = -\int_{R-r_2}^{R+r_2} E_{1-P} \cdot n\pi \frac{d}{R} \left\{ r_2^2 - (R-d)^2 \right\} \Delta d$$
$$= -\int_{R-r_2}^{R+r_2} \int_{d-r_1}^{d+r_1} \left\{ r_1^2 - (d-r)^2 \right\} \left\{ r_2^2 - (R-d)^2 \right\} \Delta r \Delta d$$

Basic 7 Micro-Nano Assembly COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

Wan der Waals energy between Sphere1 and Sphere2

$$E_{1-2} = E_{vdw} = -\frac{H}{6} \left\{ \frac{2r_1r_2}{R^2 - (r_1 + r_2)^2} + \frac{2r_1r_2}{R^2 - (r_1 - r_2)^2} + \ln\frac{R^2 - (r_1 + r_2)^2}{R^2 - (r_1 - r_2)^2} \right\}$$
$$H = n^2 \pi^2 \Lambda \qquad \text{Hamaker constant}$$

Basic 7 Micro-Nano Assembly Prof. F. Arai COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

$$r_2 \rightarrow \infty$$
 " r_1 " is rewritten to "d"

Wan der Waals energy between Sphere1 and wall

$$E_{vdw} = -\frac{H}{6} \left\{ \frac{d}{2z} + \frac{d}{2(z+d)} + \ln\frac{Z}{z+d} \right\}$$

Wan der Waals force

$$E_{vdw} = -\frac{H}{6} \left\{ \frac{d}{2z} + \frac{1}{2} + \ln 0 \right\}$$

Hd

(7 < < d)

$$F_{vdw} \approx \frac{Ha}{12z^2}$$

Liquid bridge force

$$R_1 = r \left(\frac{1}{\cos \alpha} - 1 \right)$$
$$R_2 = r \cdot \tan \alpha - R_1$$

Liquid bridge force (Positive if p is negative)

$$F_{s} = \pi R_{2}^{2} \sigma \left(\frac{1}{R_{1}} - \frac{1}{R_{2}}\right) + 2\pi R_{2} \sigma \qquad \text{o: Surface tension force}$$
Capillary force effect:
Haines, 1925 Surface tension effect
Fisher, 1926
$$F_{s} = \frac{\pi d\sigma}{1 + \tan(\alpha/2)} \qquad \alpha \to 0 \qquad F_{s} = \pi d\sigma$$

Basic 7 Micro-Nano Assembly Prof. F. Arai COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

The Equation of Young and laplace

The surface is dispersed a small distance outwards.

The change in area:

$$\Delta A = (x + dx)(y + dy) - xy = xdy + ydx$$

The work done in forming this amount of surface:

$$Work = \sigma \cdot \Delta A = \sigma (xdy + ydx) = \Delta Pxydz$$

 σ : Surface tension force, ΔP : pressure difference

The Equation of Young and laplace

Basic 7 Micro-Nano Assembly Prof. F. Arai COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

Electrostatic force

Electrostatic force by Contact Charging

Electrostatic force by Contact Charging

Electrostatic force by constant charge

$$F_{ce} = P_{ce}S = P_{ce} \cdot \pi a^{2} = P_{ce}\pi \left(\frac{3Fkd}{8}\right)^{\frac{2}{3}}$$
$$= -\frac{1}{2}\pi\varepsilon_{0}\frac{V_{c}^{2}}{z_{0}^{2}}\left\{\frac{Akd^{2}}{z_{0}^{2}}\left(1 + \frac{A^{2}k^{2}d}{108z_{0}^{7}}\right)\right\}^{\frac{2}{3}}$$

Basic 7 Micro-Nano Assembly COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

Dielectrophoresis

- *E* Electric field
- ${\mathcal E}$ Permittivity of object
- \mathcal{E}_{s} Permittivity of solution

Comparisons of interaction forces (Analytical)

<u>Radius < 1 μm</u>

Van der Waals force is bigger than other forces.

Basic 7 Micro-Nano Assembly Prof. F. Arai COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

Grouping of Micro-Nano Manipulation

Basic 7 Micro-Nano Assembly COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

Contact Manipulation: Gripper/Grasping

(a) Mechanical gripper

(c) Wan der waals gripper

(b) Electrostatic gripper

Basic 7 Micro-Nano Assembly COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

Contact Manipulation: Gripper/Grasping

(e) Pneumatic gripper

(f) Wave pressure gripper

(g) Magnetic gripper

Wan der Waals Gripper (F. Arai, 2009)

12-DOF nanomanipulation system

Positioning resolution Pitch: 10-7 rad (5 nm) Roll: 10-7 rad (3.5 nm) Extension: 0.25 nm

F. Arai et. al., IEEE NANO 2009, 2009.

Non-Contact Manipulation: Optical Tweezers

Trapping force by optical tweezers

$$F = Q \frac{nP}{c}$$

- $F\,$: Trapping force [N]
- $Q\,\,$: Trapping efficiency
- *n* : Relative Refractive index
- P : Light power [mW]
- C : Light speed 3×10^{8} [m/s]

Target size: From tens of nm to tens of μm

Ashkin A, et al, *Optics Letters*, 1986

Stability Condition of Time Shared Scanning

Optical Particle Manipulation (F. Arai, 2009)

Force is measured by image processing.

F. Arai et. al., *ICRA2009*, 2009.

Micro-Nano Assembly: Connection

(a) Deposition method

(b) Local photopolymerization

(d) Chemical bonding

(c) Laser ablation

Basic 7 Micro-Nano Assembly Prof. F. Arai COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

Connection: Electron Beam Induced Depositio

Assemble of CNT emitter by EBID

Assemble of microhand by EBID

CNT connected cantirever (CNT-emitter)

Microhand assemble by EBID

L. Dong, F. Arai, T. Fukuda, APL, 81, 1919-1921, 2002

Basic 7 Micro-Nano Assembly Prof. F. Arai COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

Connection: Local Photo Polymerization

Assembly of rope-like microtool

H. Maruyama, F. Arai, T. Fukuda, JRM, 17, 335-341, 2005

Basic 7 Micro-Nano Assembly Prof. F. Arai COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

Micro-Nano Assembly: Self-assembly

Self-assembly: Nanofabrication technique that involve aggregation of colloidal particles into final desired structure.

G.M. Whitesides, 2002

Classification of self-assembly

1. Physical assembly

2. Chemical assembly

Self-assembled monolayer

Physical self-assembly with Template

Assemble process by template-based self-assembly

I. Mold fabrication

II. Bead injection

III. Bead patterning

III. Heat connection

H. Maruyama, et. al., JRM, 22, pp.356-362, 2010.

Assemble results: Step-by-step deposition of beads

Assembly of cross-shape microtool

Template (Si)

Enployed forces:

- 1. Gravity force Bead injection into template
- 2. Liquid bridge force Alignment of bead inside template

After Heat connection

Released tool

Assemble results: Connection by heat treatment

Conclusion:

Interaction force is most important parameters for micronano assembly process such as manipulation, connection, and self-assembly.

Self-assembly is promising technique due to its low cost and the ability of to produce structures from micro to nano scales

Future direction of micro-nano assembly:

- 1. Fusion of top down and bottom up approaches
- 2. Molecular self-assembly

Requirement of precious molecular design

References

1. Naoki Inomata, Takahiro Kato and Fumihito Arai, "Evaluation of Thermal Conduction of Single Carbon Nanotube by Local Heating in Air", 2009 9th IEEE Conference on Nanotechnology, July 26-30, Italy (2009) pp. 112-115.

2. F. Arai, K. Yoshikawa, T. Sakami, and T. Fukuda, "Synchronized laser micromanipulation of multiple targets along each trajectory by single laser," Applied Physics Letters, 85, 4301-4303 (2004).

3. Fumihito Arai, Kazuhisa Onda, Ryo Iitsuka, and Hisataka Maruyama, "Multi-beam Laser Micromanipulation of Microtool by Integrated Optical Tweezers," Proc. of ICRA2009, pp. 1832-1837, 2009.

4. Lixin Dong, Fumihito Arai, and Toshio Fukuda, "Electron-beam-induced deposition with carbon nanotube emitters," Appl. Phys. Lett., 81, pp. 1919-1921

5. H. Maruyama, F. Arai, T. Fukuda, "Microfabrication and Laser Manipulation of Functional Microtool using In-Situ photofabrication," Journal of Robotics and Mechatronics, Vol. 17, No.3, (2005), pp.335-341.

6. H. Maruyama, R. litsuka, K. Onda, F. Arai, "Massive ParallelAssembly of Microbeadsfor Fabrication of Microtools Having Spherical Structure and Powerful Manipulation by Optical Tweezers," Journal of Robotics and Mechatronics, Vol. 22, no. 3, (2010), pp.356-362.

