



## Prof. T. Fukuda Dept. of Micro/Nano Systems Engineering Nagoya University





• Principal Vascular Diseases • Treatments



Aneurysms in Major Vasculature (Inner Diameter >6mm)

**Grafts Implants** 





(TERUMO) Polyethylene, ePTFE



Stenosis



Aneurysms in Minor Vasculature (Inner Diameter >6mm)

## **Endovascular Intervention**



Catheters



Platinum

Coil



Ballon Catheter





## • Need in the Medical Field

## 1. Medical Training Methods



Simple Model



Experiments in Animal

## 3. Implants for Minor Vasculature

**Grafts Implants Produces :** 

- Early Occlusion
- Intimal Hypertrophy

## 2. Quantitative Evaluation Methods



## **Stress Simulation**



Oshima Lab.Tokyo Univ.





Adv. Mater. 2005 Implant combining Cell Culture in Scaffold and Grafts





### Patient Specific Vascular Modeling



Specification:

- Information: CT or MRI.
- Modeling Resolution: 13 mm
- Fabrication Time: < 24 hours

#### [S. Ikeda, JRM 2005]







Patient-Tailored Biological Model of Cerebral Artery

## PATIENT-TAILORED MODELING



### Patient's Information (CT / MRI Information)

#### [S. Ikeda, JRM 2005]





# Implantation solution for small diameter

Three required conditions for artificial graft with small diameter (less than 6.0 mm)

- Biodegradability, biocompatibility
   Porous structure
- ③: Mechanical properties close
- to native blood vessel's properties.

Problems of previous studies



Only for tubular shape.
 No scaffold imitating the configuration of native blood vessel.





# The EVE Nagoya University Micro-Nano Systems Department Fukuda Laboratory



## Challenging the Frontier of the Surgical Simulation since 1989





# Active Catheters (1989-1996)



•Adds maneuverability to the catheter

• Endovascular techniques are new in minimally invasive surgery

•Need to be compatible wit Xrays

• Requires micro systems as catheters has about 1 mm of lumen



[S.Guo, J. of Robotics Soc. of Japan. 1996]





# Force Sensor on catheter tip (1998)





In-Vivo Experiment

•Pressure done by the catheter to an aneurism of canine was measured

• Blood pressure fluctuation was measured

#### [M. Tanimoto, Trans. of the JSME 1997]

• Prevents the damage of vessel wall

• A pressure sensor detects the force applied to the catheter tip



#### Force Sensor In Vivo Experiment Results





# Telesurgery (1996)

#### Master Arm





[F. Arai, IEEJ Trans. on Elec. 1997]

Slave Device









# Telesurgery (1997)



**Telesurgery System** 

- Reduces the X-rays irradiation to physicians
- Manipulated from outside of the surgical room

[F. Arai, IEEJ Trans. on Elec. 1997]

•First catheter manipulation mechanism using gum rollers

• Master device as human interface for catheter manipulation



### Experimentation inside surgical room





# Linear Stepping Mechanism 1 (2003)



#### F. Arai et al., ICRA 2002

Time (sec)





# Linear Stepping Mechanism 2 (2003)





# Linear Stepping Mechanism 2 (2003)

•Variable speed of insertion and extraction of catheter (Feeding force 2N)

- Variable rotation speed
- •High resolution of discrete linear motion of catheter (up to 0.1 mm/cicle)



Rotation

• Easy to clean



Forward at Variable Speed

### F. Arai et al., ICRA 2002



reciprocating distance of grasping unit





### Development of Simulator & Construction of Patent







### Patient Specific Vascular Modeling



### Specification:

- Information: CT or MRI.
- Modeling Resolution: 13 mm
- Fabrication Time: < 24 hours</li>

#### [S. Ikeda, JRM 2005]







Patient-Tailored Biological Model of Cerebral Artery

## PATIENT-TAILORED MODELING



### Patient's Information (CT / MRI Information)

#### [S. Ikeda, JRM 2005]





### Solid Vessel Model



Reproduces the Vessel Lumen with 13 mm Resolution

Patient-Specific Cerebral Arterial Model

#### <u>Fluoroscopic</u> <u>Information</u>



### Membranous Vessel Model



Soft Vessel Model

Patient-Specific Vascular Model with Membranous Structure



<u>Membranous</u> <u>Structure</u> <u>Of Cerebral Artery</u>



Membranous Vessel Structure

[S. Ikeda, JRM 2005]

Soft Brain Structure Reproduces the Circumferential Soft Brain Structure

Patient-Specific Vascular Model with Circumferential Brain Structure





Brain Structure around Cerebral Artery





### **Reproduction of Physical Characteristics**

### Elastic Property Reproduction

|                 | Young's Modulus [MPa] | Poisson's ratio |  |
|-----------------|-----------------------|-----------------|--|
| Arterial Model  | 1.9                   | 0.46            |  |
| Arterial Tissue | 1~3 (Carotid Artery)  | 0.45            |  |

#### Simulation Results



Reproduction of Viscoelastic Vascular Deformation [S. Ikeda, JRM 2005]

### Frictional Property Reproduction

|                 | Friction Coefficient | Lubricating Condition |
|-----------------|----------------------|-----------------------|
| Arterial Model  | 0.041                | Surfactant            |
| Arterial Tissue | 0.039                | Blood Serum           |



Reproduction of Aneurismal Pulsation





### **Clinical Application**



Preclinical Testing with Presented Cerebral Arterial Model (Makoto Negoro, Dept. of Neurological Surgery, fujita Health University)

[S. Ikeda, JRM 2005]



### **Application to Practical Procedure**





### Procedures that can be simulated:

- Catheter and Guide Wire Insertion
- Aortic Stents Grafts
- Carotid Artery Stenting (CAS)
- Cerebral Artery Embolism with coil or balloon
- Percutaneous Transluminal Angioplasty (PTA) with a balloon or stents.
- •Percutaneous Transluminal Coronary Angioplasty (PTCA)
- Transcatheter Hepatic Artery Embolization (THAE)
  Percutaneous Transluminal
- Recanalization (PTR)

### Cerebral Artery Embolism Treatment Simulation







### **Realtime Stress Visualization**







### Quantitative Stress Analysis

Formulation: Ratio of Transmitted Light =  $4 c_1^2 c_2^2 \sin^2(Re_{ex}/2) \cos^2(Re/2)$   $+ \{ c_1^4 + c_2^4 + 2 c_1^2 c_2^2 \cos(Re_{ex}/2) \} \sin^2(Re/2)$   $+ c_1 c_2 \sin Re \{ (c_1^2 - c_2^2) \sin 2\theta$  $- c_1^2 \sin (2\theta - Re_{ex}/2) \}$ 

- *Re* : Retardation of object
- $Re_{ex}$ : Retardation of  $1\lambda$  plate
- $\theta$  : Direction of *Re*
- $\varphi$ : Direction of  $Re_{ex}$
- $c_1 = \sin \varphi, \ c_2 = \cos \varphi$

Calculate for R, G, B respectively

### Color-Retardation Correlation [S. Ikeda, in Proc. of MICCAI 2005]







### Whole Body Modeling







## Robot Manipulation using a Magnetic Tracker





- Follow the catheter with the camera
- Manipulate the camera motion using a MMCS

![](_page_24_Picture_5.jpeg)

![](_page_24_Picture_7.jpeg)

## **Robot** Manipulation using a Magnetic Tracker

![](_page_25_Figure_1.jpeg)

#### [C.Tercero, JRM 2007]

![](_page_25_Picture_3.jpeg)

![](_page_25_Picture_5.jpeg)

## **Robot Manipulation using a Magnetic Tracker**

# Reference points inside silicone model of vasculature

![](_page_26_Picture_2.jpeg)

![](_page_26_Picture_3.jpeg)

### Motion Capture Data (Maximum error 10mm)

![](_page_26_Figure_5.jpeg)

## Robot Manipulation with Magnetic Tracker

![](_page_26_Picture_7.jpeg)

![](_page_26_Picture_9.jpeg)

# **Robot Teaching using a Magnetic Tracker**

![](_page_27_Picture_1.jpeg)

## Objective

Contribute for Development of an Autonomous Catheter Insertion System for Endovascular Surgery LSM3

•Develop an Aseptic and Efficient Catheter Insertion Mechanism

- •Motion Capture of Catheter Tip
- •Catheter Insertion Path Planning and Reconstruction
- •Avoid Puncture of vascular membrane
- •Reduce the use of the Fluoroscope
- •Create catheter prototypes

Magnetic Tracker (MMCS)

![](_page_27_Picture_11.jpeg)

![](_page_27_Picture_12.jpeg)

![](_page_27_Picture_14.jpeg)

# Robot Teaching using a Magnetic Tracker

- Collect coordinates of reference points with the magnetic tracker
- Associate each collected coordinate to a desired command to be sent to LSM at each point.
- Put the tracker inside LSM at the entrance of the model

Sparse

LUT

• Reproduce path automatically

Vector of the Sparse LUT  $\vec{P}_n = (p_{yn}, p_{yn}, p_{zn}, C_{0n}, C_{1n}, C_{2n}, C_{3n})$ 

![](_page_28_Figure_6.jpeg)

#### [C.Tercero, JRM 2007]

![](_page_28_Picture_8.jpeg)

Basic 6 Micro-Nano Control for Medical ApplicationsProf. T. FukudaCOE for Education and Research of Micro-Nano Mechatronics, Nagoya University

![](_page_28_Picture_10.jpeg)

MMCS

# Robot Teaching using a Magnetic Tracker

## Path given to the robot

![](_page_29_Picture_2.jpeg)

## Path Reconstruction

![](_page_29_Picture_4.jpeg)

### Motion Capture of Catheter Trajectory Maximum (Error 6 mm)

![](_page_29_Figure_6.jpeg)

![](_page_29_Picture_7.jpeg)

![](_page_29_Picture_9.jpeg)

## Numerical Evaluation of Catheter Performance

## Objective:

- Create an in-vitro numerical evaluation method for catheter performance
- Compare numerically MMCS probes to a Medical Use Catheter

## Requirements:

- Evaluation field similar to human vasculature
- For each evaluation homogeneous manipulation of the catheters is needed
- A method to register the catheter performance [C.Tercero, IJMRCAS 2007]

![](_page_30_Picture_8.jpeg)

### Photo-elastic Effect

![](_page_30_Picture_10.jpeg)

### Linear Stepping Mechanism 3

![](_page_30_Picture_12.jpeg)

![](_page_30_Picture_14.jpeg)

## **Numerical Evaluation of Catheter Performance**

### Method to deduce performance

![](_page_31_Figure_2.jpeg)

#### Experimental Setup and Trajectory

![](_page_31_Picture_4.jpeg)

#### **Evaluated Catheters**

![](_page_31_Figure_6.jpeg)

![](_page_31_Picture_8.jpeg)

## **Numerical Evaluation of Catheter Performance**

### Local Maxima of Birefringence Captured with all the prototypes

![](_page_32_Figure_2.jpeg)

- When birefringence appears the correlation coefficient between consecutive video frames is reduced
- Minimum correlation and average correlation is then calculated and normalized

1) Performance Above Medical use Catheter

2 Performance below Medical use Catheter

C1 Medical use catheter

#### [C.Tercero, IJMRCAS 2007]

![](_page_32_Figure_9.jpeg)

# 1. Photoelastic Stress Analysis Theory

![](_page_33_Figure_1.jpeg)

![](_page_33_Picture_2.jpeg)

![](_page_33_Figure_4.jpeg)

# 3. Membrane Thickness Measurement

![](_page_34_Figure_1.jpeg)

Relation Between Blue Light Intensity and Laser Microscope Measurements

![](_page_34_Figure_3.jpeg)

- $T_c = 1666.66$  $R^2 = 0.99$
- $I_B = Blue Light Intensity$
- $I_{BMax} = Maximum I_B$

#### [C.Tercero, IEEE/ASME Trans. on Mech 2010]

![](_page_34_Picture_8.jpeg)

![](_page_34_Figure_10.jpeg)

## 4. Photoelastic Coefficient Measurement

## **Stress Measurements in Thin Membrane**

• Force Sensing

 $\sigma_1 - \sigma_2 = \frac{1}{LD} = \frac{1}{CD}$ 

 Photoelastic Stress Analysis

$$\sigma_1 - \sigma_2 = \frac{\text{Re}}{CD}$$

$$C = \frac{\operatorname{Re} L}{F} \Longrightarrow \quad \overline{C} = 1.284 \times 10^{-9} \, Pa^{-1}$$

Re

![](_page_35_Figure_6.jpeg)

### [C.Tercero, IEEE/ASME Trans. on Mech 2010]

![](_page_35_Picture_8.jpeg)

Basic 6 Micro-Nano Control for Medical ApplicationsProf. T. FukudaCOE for Education and Research of Micro-Nano Mechatronics, Nagoya University

![](_page_35_Figure_10.jpeg)

Measurement System to apply Variable Tension to the Membrane

![](_page_35_Figure_12.jpeg)

# 5. Error Quantification

## **Stress Measurements in Pipe Model**

Using pressure and radial deformation (Reference) 40  $\sigma_1 - \sigma_2 = \frac{2rP}{D} \left( \frac{r - D}{2r - D/2} \right)$ 8 30 % 30 20 **HBPS** Range 10 Photoelastic Stress Analysis  $\sigma_1 - \sigma_2 = \frac{\text{Re}}{CD}$   $I_{GN} = \sin^2 \frac{\pi \text{Re}}{\lambda_G}$ 0 20 40 60 80 100 120 140160 180 Pressure(mmHg) - Photoelastic Stress Analysis - Reference Stress 2560 Average Stress in ROI (mmHg) 008 008 009 009 009 009 009 000 000 1920 1280 640  $\sigma_1 - \sigma_2$ (mmHg) HBPS Range Photoelastic Stress Analysis at 189mmHg 100 120 140 160 180 0 20 60 80

### [C.Tercero, IEEE/ASME Trans. on Mech 2010]

![](_page_36_Picture_4.jpeg)

Basic 6 Micro-Nano Control for Medical ApplicationsProf. T. FukudaCOE for Education and Research of Micro-Nano Mechatronics, Nagoya University

![](_page_36_Picture_6.jpeg)

Pressure (mmHg)

# 6. Application to the Carotid Artery Model

• Stress Distribution Correction for each image column

$$(\sigma_1 - \sigma_2)'_{(x,y)} = (\sigma_1 - \sigma_2)_{(x,y)} + k \cos\left(\frac{2\pi y}{40}\right) ((\sigma_1 - \sigma_2)_{AVG(x,ROI)} - (\sigma_1 - \sigma_2)_{\min(x,ROI)})$$

![](_page_37_Figure_3.jpeg)

Noise Suppression Filtering

![](_page_37_Figure_5.jpeg)

$$S = \sum_{\substack{n=x_{-}5\\n_{=}y_{-}5}}^{x+5} P(n, y-5) + P(n, y+5)$$
$$+ \sum_{\substack{n=y_{-}5\\n_{=}y_{-}5}}^{y+5} P(x-5, n) + P(x+5, n)$$

If the S<1400 then P(x,y) must be zero

#### [C.Tercero, in Proc. of ISR 2010]

![](_page_37_Picture_9.jpeg)

![](_page_37_Picture_11.jpeg)

### 9. Three Dimensional Visualization of Photoelastic Stress Analysis

- Sinograms of Thickness and Retardation were registered using a rotary scan
- Slices of were reconstructed using ML-EM Method

![](_page_38_Figure_3.jpeg)

#### Slices of Stress in pipe at different pressures

![](_page_38_Figure_5.jpeg)

![](_page_38_Picture_6.jpeg)

#### 3D Scanner and Blood Vessel Model

#### 3D Visualization of Photoelastic Stress Analysis of Pipe Segment

![](_page_38_Picture_9.jpeg)

Basic 6 Micro-Nano Control for Medical ApplicationsProf. T. FukudaCOE for Education and Research of Micro-Nano Mechatronics, Nagoya University

[M. Matsushima, IROS2010]

![](_page_38_Picture_12.jpeg)

# Hybrid Pump

## Objective:

Reproduce Human blood flow and pressure variation using a Hybrid Pump

## Requirements:

- •Low inertia to allow fast changes on the flow rate.
- •Sustain a minimum pressure of 90 mmHg
- •Do not introduce vibration on the vascular model

![](_page_39_Figure_7.jpeg)

![](_page_39_Picture_8.jpeg)

![](_page_39_Picture_10.jpeg)

# Hybrid Pump

### Piston Head Mechanism

![](_page_40_Figure_2.jpeg)

- ABS Plastic body and lobes
- Stainless Shafts and Transmission
- Stainless Bearings
- Gearbox

### [C. Tercero, SYROCO 2009]

![](_page_40_Figure_8.jpeg)

![](_page_40_Figure_10.jpeg)

## Hybrid Pump and Photoelastic Stress Analysis

![](_page_41_Picture_1.jpeg)

System Setup

![](_page_41_Figure_3.jpeg)

Human Blood Pressure Simulation

![](_page_41_Picture_5.jpeg)

Human Pressure

![](_page_41_Picture_6.jpeg)

Guide Wire and Human Pressure Simulation

![](_page_41_Picture_8.jpeg)

![](_page_41_Picture_10.jpeg)

## Hybrid Pump and Photoelastic Stress Analysis

#### Human Pressure Simulation

![](_page_42_Figure_2.jpeg)

Time

### Catheter +Human Pressure Simulation

![](_page_42_Figure_5.jpeg)

#### [C. Tercero, IJAT 2009]

![](_page_42_Picture_7.jpeg)

![](_page_42_Figure_9.jpeg)

## Hybrid Pump For Scaffold Evaluation

![](_page_43_Picture_1.jpeg)

|         |          | I      |                                                                                                                      |         |              |                |      |
|---------|----------|--------|----------------------------------------------------------------------------------------------------------------------|---------|--------------|----------------|------|
|         | 160      |        |                                                                                                                      | 1       | ٦            | <u>۸</u>       |      |
| 1mHg)   | 140      |        |                                                                                                                      |         | h f          |                |      |
|         | 120      |        | $ \land \land$ |         |              | _\/            |      |
|         | 100      |        |                                                                                                                      |         |              | \'             |      |
| re (n   | 80       | /      | · V ·                                                                                                                | - V     |              |                | V    |
| Pressur | 60<br>40 | ~~~~~  |                                                                                                                      | - Refe  | erence Signa | l (Polynomial) | ]    |
|         | -0       | •      |                                                                                                                      |         |              |                |      |
|         | 20       |        |                                                                                                                      |         |              |                |      |
|         | 0        |        | 1                                                                                                                    | 1       | 1            | 1              | 1    |
|         |          | 0 1.03 | 2.06                                                                                                                 | 3.08    | 4.09         | 5.11           | 6.13 |
|         |          |        |                                                                                                                      | Time(s) |              |                |      |

| Waveform                   | command signal |           | PLCL Scaffold Evaluation |                        |  |  |
|----------------------------|----------------|-----------|--------------------------|------------------------|--|--|
| Average Error (mmHg)       | 5.07           | I         |                          |                        |  |  |
| Maximum<br>Pressure (mmHg) | 154.35         | Diastolic | Systolic                 | Systolic Diameter      |  |  |
| Minimum Pressure           | 83.79          |           | and the second second    | (mm)                   |  |  |
| (mmHg)                     |                |           | and the second second    | Diastolic Diameter     |  |  |
| Maximum Error              | 15.55          |           |                          | (mm)                   |  |  |
| (mmHg)                     |                |           |                          | Diameter at relaxation |  |  |
| <u>C. Tercero, SYR</u>     | OCO 2009]      |           |                          | state (mm)             |  |  |

Response to pressure waveform

![](_page_43_Picture_6.jpeg)

**Basic 6 Micro-Nano Control for Medical Applications** Prof. T. Fukuda COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

![](_page_43_Picture_8.jpeg)

6.11

5.94

5.3

Final goal of this research

Implantation of tailor-made artificial blood vessel, fabricated in-vitro, in the place of diseased blood vessel.

Three steps to achievement the goal

![](_page_44_Picture_4.jpeg)

Development of small diameter scaffold, which is

①Small diameter scaffold three dimensional and tailor-made

2 Multi layer scaffold imitating human blood vessel

(3) Three dimensional cell culture to grow patient's cells on the scaffold

![](_page_44_Picture_9.jpeg)

![](_page_44_Picture_11.jpeg)

Fabrication method of scaffold

Macro technology

![](_page_45_Figure_3.jpeg)

![](_page_45_Picture_4.jpeg)

![](_page_45_Picture_6.jpeg)

### Relation between porosity and Young Modulus

![](_page_46_Figure_2.jpeg)

![](_page_46_Picture_3.jpeg)

![](_page_46_Figure_5.jpeg)

#### Fabrication method of the 3D carotid arterial scaffold

![](_page_47_Figure_2.jpeg)

![](_page_47_Picture_3.jpeg)

![](_page_47_Picture_5.jpeg)

## Developed porous scaffold

![](_page_48_Picture_2.jpeg)

- Porous scaffold replicating the shape of a carotid artery
  Replicates human blood vessel elasticity (Young Modulus: 1.8 MPa)
- •Porous structure, which was constructed by elusion of salt particles, was confirmed.

## Observation by SEM

Inner diameter of: Entrance 7.0 mm Exit 4.0 mm

![](_page_48_Picture_7.jpeg)

![](_page_48_Picture_8.jpeg)

#### [T. Uchida, J. of Biotech 2008]

![](_page_48_Picture_10.jpeg)

![](_page_48_Picture_12.jpeg)

![](_page_49_Figure_1.jpeg)

Smooth muscle cell(SMCs)

![](_page_49_Figure_3.jpeg)

Benefits of bi-layered scaffold

Elastic layer for withstanding blood pressure.High porosity layer as the base for ECs and SMCs.

[H. Oura, in Proc. of Robomec 2008]

![](_page_49_Picture_7.jpeg)

![](_page_49_Picture_9.jpeg)

### Fabrication of bi-layered scaffold by Salt-leaching method

![](_page_50_Figure_2.jpeg)

![](_page_50_Picture_3.jpeg)

Basic 6 Micro-Nano Control for Medical ApplicationsProf. T. FukudaCOE for Education and Research of Micro-Nano Mechatronics, Nagoya University

![](_page_50_Picture_5.jpeg)

Cross section of scaffold

## Evaluation of porosity by image processing

![](_page_51_Picture_2.jpeg)

**Image processing** 

![](_page_51_Picture_4.jpeg)

![](_page_51_Picture_5.jpeg)

[H. Oura, in Proc. of Robomec 2008]

![](_page_51_Figure_7.jpeg)

**Experimental conditions** 

**Chloroform:PLCL** 

**NaCl : PLCL for inner layer** 

|    | NaCI : PLCL for outer layer |                |                     |                           | <b>0:10</b> (Wt%)      |                                          |  |
|----|-----------------------------|----------------|---------------------|---------------------------|------------------------|------------------------------------------|--|
|    | Sample number               |                |                     | N=10                      |                        |                                          |  |
|    | (%                          | 30<br>25<br>20 |                     |                           |                        | <ul> <li>inner</li> <li>outer</li> </ul> |  |
|    | Porosity (                  | 15<br>10<br>5  |                     |                           |                        |                                          |  |
| ar | ea                          | 0<br>C         | 8:2<br>Soncentratio | <b>6:4</b><br>n of NaCl : | <b>4:6</b><br>PLCL for | <b>2:8</b><br>1 <sup>st</sup> solution   |  |

![](_page_51_Picture_10.jpeg)

**Basic 6 Micro-Nano Control for Medical Applications** Prof. T. Fukuda COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

![](_page_51_Picture_12.jpeg)

100 : 5 (wt%)

8:2, 6:4, 4:6, 2:8(wt%)

10 ( 10/)

## **Blood Vessel Simulator and Surgical Operation System**

![](_page_52_Figure_1.jpeg)

T. Fukuda et al., IEEE Industrial Electronics Magazine, Vol. 4, pp. 13-22, 2010.

![](_page_52_Picture_3.jpeg)

![](_page_52_Figure_5.jpeg)

## "In vitro" Realization of "In vivo" Environment ~Blood vessel~

![](_page_53_Figure_1.jpeg)

![](_page_53_Picture_2.jpeg)

![](_page_53_Picture_4.jpeg)