Basic 3 Micro-Fabrication Methodology – Machining with machine tools –

Prof. E. Shamoto

Dept. of Mechanical Science and Engineering Nagoya University

Contents;

- Oblique cutting mechanics
- Chatter vibration in ball end milling process
- Ultraprecision/micro elliptical vibration cutting

Basic 3 Micro-Fabrication Methodology – Machining with machine tools – Prof. E. Shamoto

Oblique cutting mechanics

- Eiji Shamoto and Yusuf Altintas: Prediction of Shear Angle in Oblique Cutting with Maximum Shear Stress and Minimum Energy Principles, Trans. ASME Journal of Manufacturing Science and Engineering, Vol.121 (1999) pp.399-407
- Eiji Shamoto: Study on Three Dimensional Cutting Mechanics (1st Report)- Comprehension and Vector Formulation of Oblique Cutting Process, J. of JSPE, Vol.68, No.3, (2002) pp.408-414

Basic 3 Micro-Fabrication MethodologyProf. E. Shamoto– Machining with machine tools –COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

Orthogonal Cutting Mechanics

 Minimum energy principle Merchant (1945)

 $\phi = 45^{\circ} - \beta \times 2 + \alpha \times 2$

Basic 3 Micro-Fabrication Methodology – Machining with machine tools – COE for Education and Research of Micr Prof. E. Shamoto

Oblique Cutting Process and Parameters

Oblique cutting process

Oblique cutting parameters

Unknown vectors: v_{S} , v_{C} , r

Basic 3 Micro-Fabrication Methodology – Machining with machine tools – Prof. E. Shamoto

Velocity Relation (Merchant, 1944)

Basic 3 Micro-Fabrication Methodology – Machining with machine tools – COE for Education and Research of Mic Prof. E. Shamoto

Force Relation (Stabler, 1951)

Basic 3 Micro-Fabrication Methodology - Machining with machine tools -COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

Prof. E. Shamoto

Proposed Methods to Predict Shear Direction

Relations among Parameters in Oblique Cutting

Basic 3 Micro-Fabrication Methodology

- Machining with machine tools -

COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

Prof. E. Shamoto

Results of Oblique Cutting Simulations

 $\alpha_n=20^\circ$, $\beta=34.6^\circ$. Lin & Oxley's data: S1214 Steel, $\beta=32.5-35.5^\circ$, h=0.5mm, b=5mm, Vw=120,180m/min. Armarego's data: 60655-T6 Aluminum, $\beta=33.5-40^\circ$, h=0.06-0.32mm, b=6.25mm, Vw=0.25m/min

Prof. E. Shamoto

Basic 3 Micro-Fabrication Methodology

– Machining with machine tools –

Experimental and Simulated Milling Forces

- Machining with machine tools -

Chatter vibration in ball end milling process

-E. Shamoto and K. Akazawa, Analytical prediction of chatter stability in ball end milling with tool inclination, CIRP Annals – Manufacturing Technology, Vol.58/1 (2009) pp.351-354
-Y. Altintas, E. Shamoto, P. Lee and E. Budak, Analytical Prediction of Stability Lobes in Ball End Milling, Trans. ASME J. Manuf. Sci. & Engg., Vol.121 (1999) pp.586-592

Basic 3 Micro-Fabrication MethodologyProf. E. Shamoto– Machining with machine tools –COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

Ball End Milling with Tool Inclination

Tool coordinates: *xyz* Work coordinates: *uvw*

Tool inclination: i_x around x, then i_{v} around y

Rotation axis: z Cutting feed: *u* Pick feed: v

Engagement region

- Machining with machine tools -

Ball End Milling with Self-Excited Chatter Vibration

Solution of Chatter Stability

Experimental Conditions

Spindle	Machining co	nditions
	Spindle speed $n \text{ min}^{-1}$	5640, 6240, 8220
Ball end mill Displacement	Feed rate mm/tooth	0.01
Pick s sensor	Depth of cut <i>d</i> mm	0.5 - 5.0
Workpiece	Pick feed <i>p</i> mm	1
	Cutting feed dir. f_{dr}	1
	Tool radius r mm	10
	Number of teeth <i>n_f</i>	2
Machining	Inclination angle i_x deg	-60, -30, -10, 0 10, 30, 45, 60
Center	Inclination angle <i>i_y</i> deg	0
Experimental setup	Workpiece	Aluminum alloy (JIS: A5052)

-30, -10, 0,

Basic 3 Micro-Fabrication Methodology - Machining with machine tools -

6

Chatter Stability at Varied Spindle Speed n (i_x =-30 deg)

X: chatter (0.24 μ m < $s_0 \le 1.2 \mu$ m), *****: severe chatter (1.2 μ m< $s_0 \ge 0.2$

Basic 3 Micro-Fabrication Methodology

- Machining with machine tools -

COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

Prof. E. Shamoto

Chatter Stability at Varied Inclination i_x (n=6240 min⁻¹)

Workpiece: aluminum alloy (JIS:A5052); Cutter: HSS ball end mill (EBD80820, OSG Corp.), $n_f=2$, r=10 mm, $i_y=0$ deg, $i_0=30$ deg, normal rake angle: 11 deg (roughly constant along ball-ended helical flute); Feed rate: 0.01 mm/tooth; Pick feed p=1 mm; Feed direction $f_{dr}=1$; Cutting fluid: soluble; Identified material properties: shear strength $\tau=226$ MPa, friction angle $\beta=40.7$ deg.

Prof. E. Shamoto

Basic 3 Micro-Fabrication Methodology

- Machining with machine tools -

Ultraprecision/micro elliptical vibration cutting

- E. Shamoto and T. Moriwaki: Study on Elliptical Vibration Cutting, Annals of the CIRP, Vol.43/1 (1994) pp.35-38,
- E. Shamoto, et al.: Development of 3 DOF ultrasonic vibration tool for elliptical vibration cutting of sculptured surfaces, Annals of the CIRP, Vol.54/1 (2005) pp.321-324
- -N. Suzuki, M. Haritani, J. Yang, R. Hino, E. Shamoto: Elliptical Vibration Cutting of Tungsten Alloy Molds for Optical Glass Parts, Annals of the CIRP, Vol.56/1 (2007) pp.127-130, etc.

Basic 3 Micro-Fabrication Methodology - Machining with machine tools -COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

Prof. E. Shamoto

1. Elliptical vibration cutting process

2. Ultrasonic elliptical vibration tools

3. Application to ultraprecision micro machining of hard / brittle materials
3-1 Steel
3-2 Calcium fluoride
3-3 Tungsten alloy

Basic 3 Micro-Fabrication MethodologyProf. E. Shamoto– Machining with machine tools –COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

One Cycle of Elliptical Vibration Cutting Process

Basic 3 Micro-Fabrication Methodology – Machining with machine tools –

COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

Prof. E. Shamoto

Change in Chip Thickness by Applying Elliptical Vibration Cutting

E. Shamoto and T. Moriwaki, 8th ASPE, 1993

Prof. E. Shamoto

Workpiece: copper, rake: 0 deg, cutting speed: 0.26 mm/min, depth of cut: 10 μ m, vibration: linear / circular, amp.: 10 μ m_{p-p}, freq.:1.2 Hz

Basic 3 Micro-Fabrication Methodology

– Machining with machine tools –

1. Elliptical vibration cutting process

2. Ultrasonic elliptical vibration tools

3. Application to ultraprecision micro machining of hard / brittle materials
3-1 Steel
3-2 Calcium fluoride
3-3 Tungsten alloy

Basic 3 Micro-Fabrication MethodologyProf. E. Shamoto– Machining with machine tools –COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

First Prototype of Ultrasonic Elliptical Vibration Tool

Machining with machine tools –
 <u>COE for Education</u> and Research of Micro-Nano Mechatronics, Nagoya University

Developed Ultrasonic Elliptical Vibration Tools

First prototype of ultrasonic elliptical vibration tool

Commercial ultrasonic elliptical vibration tool developed by collaborative research with Taga Electric Co., Ltd.

Basic 3 Micro-Fabrication Methodology – Machining with machine tools – COE for Education and Research of Mic Prof. E. Shamoto

1. Elliptical vibration cutting process

2. Ultrasonic elliptical vibration tools

3. Application to ultraprecision micro machining of hard / brittle materials
3-1 Steel
3-2 Calcium fluoride
3-3 Tungsten alloy

Basic 3 Micro-Fabrication Methodology Prof. E. Shamoto – Machining with machine tools – COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

Finished Surface of Hardened Die Steel

Workpiece: hardened die steel (JIS: SUS420J2), HRC39. Speed: 3.4 m/min. Feed: 10 μ m /rev. Tool: R1 mm. Vibration: circular, radius 4.25 μ m, freq. 21.5 kHz.

Prof. E. Shamoto

Basic 3 Micro-Fabrication Methodology

- Machining with machine tools -

Die for Front Light Panel of LCD Machined by Elliptical Vibration Cutting

(a) Photograph of Finished surface

(b) SEM photograph of microgrooves

Measured in cutting direction (c) Profiles of grooved surface

[Conditions] Workpiece: hardened die steel (JIS: SUS420J2), HRC53. Depth: 1 μm. Feed: 300 μm. Speed: 0.25 m/min. Circular vibration. Amp.: 3 μm. Freq.: 19.6 kHz. Tool: V, 107 deg.

[Measured results] Roughness: 0.04 µm Rmax

Basic 3 Micro-Fabrication Methodology – Machining with machine tools – Prof. E. Shamoto

Micro Grooving of Single Crystal Calcium Fluoride

Ordinary cutting

Elliptical vibration cutting

Prof. E. Shamoto

Depth of cut: 2 μ m, Cutting speed: 0.37 m/min, Cutting direction: $\langle 0\overline{1}1 \rangle$ Vibration: Circular, Amplitude: 4 μ m, Freq.: 19.5 kHz Tool: Single crystal diamond, Nose radius: 1 mm, Rake: 0°

Basic 3 Micro-Fabrication Methodology

– Machining with machine tools –

Ultraprecision Cutting of W Alloy for Optical Glass Molds

Features of W alloy

[Advantage]

- High thermochemical stability up to about 1200°C
- Nonadhesive to glass → molding without coating
- Rough machining by carbide tools
- Low cost

[Disadvantage]

- Difficult to apply diamond cutting due to rapid tool wear, adhesion and brittle fracture.
- Difficult to apply abrasive processes due to loading

W alloy molds finished by elliptical vibration cutting. 0.03-0.04 μm Rmax

Depth of cut: 5 μ m, Feed: 5 μ m/rev, Rotation: 42 rpm, Vibration: Circular, Amp.: 4 μ m_{p-p}, Freq.: 38.7 kHz, Tool: Single crystal diamond, Nose radius: 1 mm, Rake: 0 deg, Machined shapes: curvatures of R20 (left), 15 (right), ϕ 11 mm

Basic 3 Micro-Fabrication Methodology – Machining with machine tools – Prof. E. Shamoto

Examples of W Alloy Molds and Molded Glass Parts

<Machined molds> Left: Mold for prism (13.5×20) Center: Mold for spherical lens (ϕ 3, R2.5, Depth 0.5) Right: Mold for optical fiber connector

<Molded parts> Optical glass (BK7)

Basic 3 Micro-Fabrication Methodology - Machining with machine tools -COE for Education and Research of Micro-Nano Mechatronics, Nagoya University

Prof. E. Shamoto

V-Groove Array Mold and Molded Optical Glass

Machining with machine tools –
 COE for Education and Research of Micro-Nano Mechatronics, Nagoya University