Advanced 1 Introduction Applications and Examples of MicroNano Mechatronics

Prof. T. Fukuda and Prof. F. Arai
Dept. of Micro/Nano Systems Engineering
Nagoya University

Technologies for Micro-Nano echatronics

Micro-Nano fabrication

- MEMS
- NEMS
- Machining
- Assembly
- Optics/Imaging

Micro-Nano Mechatronics

Robot technology

- Sensors
- Actuators
- Control theory
- Dynamics

Micro-Nano Materials

- Tribology
- Energy
- Synthesis

Application Fields of Micro-Nano Mechatronics

Medical field

- Surgical devices
- Endoscopic devices
- Training
- Diagnosis devices
- Implantation devices
- Welfare

Industrial field

- Micro size sensors
- Hi-sensitive sensors
- Integrated packaging
- Wireless technology
- Cost reduction
- New energy

Bio field

- Single cell sensing
- Drug delivery
- Genome analysis
- Biofuel
- Cell assembly
- Tissue engineering

Fundamental research field

- New technology establishing
- New material
- New observation

Application Examples

- Medical Field -

Background

ESD (Endoscopic Sub-mucosal Dissection)

Excision procedure

Exfoliating

<u>Advantages</u>

- Minimally invasive procedure
- Quick recovery

Problems

- Time-consuming
- Skill-dependent

Rerated Works

Clinical Field

S-O clip, Sakamoto et al. (2008)

Reserach Field

Ikuta et al. (2000) 5DOF 3.0mm

> Fujie et al. (2005) 3DOF 2.4mm

> > Olympus Medical **EndoSAMURAI**

> > > Nokata et al. (2010) 3DOF 1.4mm

Decoupling Wire Driven Microarm

Design of 2DOF microarm (less than 3mm)

Channel $(\phi 3 \text{ mm})$

Wire-electric discharge

Photolithography

Ref.) Kawahara et al., Biorob, 2010

Wire Decoupling Design

To achieve the wire decoupling, this wire for gripper is precisely passed through the center position of the arm joint.

Joint Design

Trapezoid frame

 $l_1 = 0.67 \text{ mm}$ Deformation angle at C [deg., $l_2 = 0.00 \text{ mm}$ $\phi = 12.0 \text{ deg.}$

- Wire decoupling
- Large movable angle

Required accuracy: 50 μm

Wire-electric discharge machining

Gripper Design

Wire-electric discharge (Phosphor bronze: thickness 1 mm)

Photolithography + Electroplating

Photolithography + Electroplating

STAMP [Arai et al. JRM, 2009]

(Stacking Microassembly Process)

Animal Experiment

Conventional oral-endoscope

Channel: 2.7 mm

Pig stomach

Sex: Age: D. O. Birth:

2010/06/18 12:10:57

SCV-6

Comment:

Application Examples

- Industrial Field -

Background

Needs a load sensor for robotics and healthcare field.

Comparison of Conventional Load Sensors

Load Sensor Elements

- Strain Gauge
- Compressive Conductive Rubber
- Vision Sensor
- Piezoelectric Element
- Quartz Crystal

For wide range measurement, we selected Quartz Crystal.

Artificial Crystal

http://www.tew.co.jp

Quartz Crystal type force sensor

- Sensing depends on the stress of the element.
- Robust against time and temperature change...

High sensitivity & wide range measurement Excellent stability

- High frequency characteristic ... High-speed measurement
- Self-vibration... Self-sensing function

Disadvantage: QCRs are vulnerable to stress concentration in bending.

Conventional Sensors

Comparison with Commercial Product and Previous Work

	(a) KISTLER 9001A	(b) KISTLER 9207	(c) Z. Wang et al. 2004
Output	Electric Charge	Electric Charge	Frequency
Measuring Objects	Quasi-static ~ Dynamic	Quasi-static ~ Dynamic	Static
Sensitivity	4 pC/N (1 g)	115 pC/N (50 mg)	105 Hz/N
Measuring Range	~ 7.5 N	±50 N	~ 100 N
Size [mm]	φ10.3 x 6.5	φ11.9 x 63.7	31 x 30 x 35

Our goal is to make sensitive, wide range, small (thin) load sensor using AT-cut quartz crystal resonator.

Concept of Load Sensor

Characteristics of Vertical Type Load Sensor

- 1. Resolution improvement
- ⇒Vertical type maintenance
- 2. Stable maintenance
- ⇒Blade spring and outer casing
- 3. Further miniaturization
- $\Rightarrow \phi 7 \times 11 \text{ mm}$ (1/4 volume ratio)

Quartz crystal resonator

Packaging: more compact $V_1 = \pi \times 3.5^2 \times 11 \text{ mm}^3$ $V_2 = \pi \times 6.5^2 \times 13 \text{ mm}^3$ $V_1 / V_2 = 0.25$

φ7 mm x 11 mm

Contact point Upper wall

Blade spring
Quartz crystal
resonator
Casing

Outer casing

Ball bearing

Preloading bolt

Ref.) Narumi et al., JRM, 2009

Structural Analysis

Stress distribution in z axis

Load Conversion Efficiency

Section area of QCM : 0.1 mm x 3 mm = 0.3 m Impressed load to QCM: 4.7 MPa x 0.3 mm² = 1.41 N \Rightarrow Load Conversion Efficiency: 1.41 / 2.0 = 0.705

cf. Load conversion efficiency of conventional sensor was 0.37.

Stress distribution in y axis

Displacement distribution in y axis

Fabrication -Quartz Crystal Resonator-

Concept of Quartz Crystal Resonator

Fabrication Process

Equivalent circuit

Fabricated quartz crystal resonator

Fabrication -Retention Mechanism-

Fabrication of Retention Mechanism

Fabrication method: Wire electrical discharge machining

Material -Casing: SUS304

-Blade Spring: Phosphor bronze

Fabricated retention mechanism and casing

Comparison with conventional sensor's package

Loading Experiment with Package

Experimental Setup

- 1. The sensor is pressed to wall by moving Z stage vertically.
- 2. The load given to the sensor is measured by load cell as the sensor and load cell are placed vertically.
- 3. Sensor output (resonance frequency) was measured by frequency counter.

Experimental Results

With no Initial Load

Experiment condition

Temperature : 22°C

Humidity: 45%

Voltage : 4.5 V

With Initial Load of 10 N

Experiment condition

Temperature : 25°C

Humidity: 45%

Voltage : 4.5 V

Initial load is 10 N

$$Y = 573.0*10^{-6}X + 16.231$$

$$R^2 = 0.9452$$

X: Load [N]

Y: Resonant frequency [MHz]

Discussion

Allowable stress to QCM is 128 MPa (38.4 N). Resolution of the new type force sensor is seven times to the conventional one. (1250 / 160 = 7.8, 215 / 30 = 7.2)

	New type sensor	Conventional type sensor
Force conversion efficiency	70 %	37 %
Maximum load	38.4 x (100 / 70) = 54.9 N	38.4 x (100 / 37) = 103.8 N
Resolution	3.21 mN (0.33 g)	22.5 mN (2.30 g)

Application Examples

- Fundamental Research Field -

Background

Temperature measurement for nanoscale object

Cantilever with a carbon nanotube (CNT)

Employ carbon nanotube as a tip of cantilever

Why CNT?

Graphene sheet with a cylindrical nanostructure Ex) Single wall, Double wall, Multi wall carbon nanotube

Small size (on the order of a few nanometers in diameter)

High heat conduction (3000~6000 W/m·K), (cf:Cu 400 W/m·K)

- High stability
- High strength (up to 48,000 kN-m/kg), (cf: high-carbon steel's 154 kN-m/kg)

Advanced 1 Introduction

High current density tolerance (10⁹A/cm²)

 $(cf : Cu10^6 A/cm^2)$

http://www.aero.kyushu-u.ac.jp/aml/fig/cnt.jpg

Thermal property of CNT

T.Y. Choi, et al, NANO LETTERS,

300 W/mK

I.K. Hsu, et al, NANO LETTERS, Vol. 9, No. 2, 590-594, 2009.

Vol. 6, No. 8, 1589-1593, 2006.

E. Pop, et al, NANO LETTERS, Vol. 6, No. 1, 96-100,2006.

3500 W/m K

2000 W/m K

M. Fujii, et al, PHYSICAL REVIEW LETTERS, 95, 065502, 2005

In vacuum

Purpose

Problem

→ High heat conduction (3000~6000 W/m⋅K)

Theoretical value

How about the flow of heat in water and air?

Purpose of this study

Evaluation of thermal characteristics of CNT in air and water

How much is the value of the heat flow of CNT actually in air and water?

Purpose

Point

Detecting heat from the end of CNT

1. Heating at the end of CNT

Using microheater

2. Heat detection

Measuring electrical resistance by 4-point method

Design

Pattern on wafer

Microheater SOI wafer **Microheater** Electrodes (a) Overall view

Chip size: 20 mm \times 20 mm \times 550 μ m (SOI Si:SiO2:Si = 1.5 μ m:3 μ m: 550 μ m)

Gap: $1 \mu m \times 50 \mu m \times 5 \mu m$

Fabrication

Nanomanipulator (MM3A, Kleindiek Nanotechnik Gmbh)

Experiments

CNT on the pattern

Measured result (water)

Heat quantity to increase the temperature of CNT in water (93.8 μJ/K) was lower than that in air (64.3 μJ/K)

Application Examples - Bio Field -

Background

Automation system of supplying cells one by one from biochip to incubation atmosphere is highly required.

Rerated Works

Inkjet mechanism (EPSON Co, Ltd.) Bio-printing (Nakamura et al.)

Drive unit

Automatic Cell Dispensing System for a single cell dispensing

Ref.) Kawahara et al., µ-TAS, 2010 Air pulse generator Reusable inkjet Air input mechanism Loader **Disposable** Microchannel microchip Nozzle Cell Capacitance Droplet with a cell sensor Culture well XY-stage

Inkjet Mechanism with Disposable Structure (JPN Patent: 2009-91542)

Capacitance Sensor

1. Nozzle

1. Drilling Ф0.7mm Glass

2. Nozzle assemble

2. Electrode

1.Supatter(Cr/Au) & Resist patterning h-line Cr/A **OFPR**

2. Au wet etching

3.Cr wet etching

3. Micro-channel

1.PDMS molding

2. Assmbly (Plasma)

Advanced 1 Introduction

Fabricated Microchip

Disposable microchip (30x30 mm)

Experimental Setup

Droplet generation and Dispensing

Droplet size: 1mm

Droplet volume: approx. 0.4µl

We succeeded in the single swine oocyte dispensing.

References

1. K. Narumi, D. Azuma, and F. Arai:

Fabrication of Articulated Microarm for Endoscopy by Stacked Microassembly Process (STAMP), Journal of Robotics and Mechatronics, Vol. 22, No. 3, pp. 412-418, 2009.

2. T. Kawahara, T. Matsumoto, N. Muramatsu, T. Osada, N. Sakamoto, and F. Arai: Development of a Decoupling Wire Driven Exoskeletal Microarm for Endoscopic Submucosal Dissection, Proc. of the 3rd IEEE/RAS-EMBS Int. Conf. on Biomedical Robotics and Biomechatronics, pp. 849-854, 2010.

3. K. Narumi, A. Asakura, T. Fukuda, and F. Arai:

Design, Fabrication and Characterization of Compact Force Sensor using AT-cut Quartz Crystal Resonators, Journal of Robotics and Mechatronics, Vol. 21, No. 2, pp. 260–266, 2009.

4. K. Narumi, T. Fukuda, and F. Arai:

Design and Characterization of Load Sensor with AT-Cut QCR for Miniaturization and Resolution Improvement, Journal of Robotics and Mechatronics, Vol. 22, No. 3, pp. 286-292, 2010.

5. N. Inomata, Y. Yamanishi, and F. Arai:

Manipulation and Observation of Carbon Nanotubes in Water Under an Optical Microscope Using a Microfluidic Chip, IEEE Transactions on Nanotechnology, Vol. 8, Issue. 4, pp. 463-468, 2009

6. T. Mizunuma, Y. Yamanishi, S. Sakuma, H. Maruyama, and F. Arai:

Disposable Inkjet Mechanism for Microdroplet Dispensing, Journal of Robotics and Mechatronics, Vol. 22, No. 3, pp. 341-347, 2010.

7. T. Kawahara, T. Mizunuma, H. Uvet, M. Hagiwara, Y. Yamanishi, and F. Arai:

Development of On-Chip Automatic Cell Sensing and Ejection System,

Proc. of the 14th Int. Conf. on Miniaturized Systems for Chemistry and Life Sciences, pp. 1781-1783, 2010.

